
Watcher
A ‘superordinate’ firewall management solution and

realtime intrusion detection and prevention system for Linux
server systems

 keep network bandits away … …

Watcher Modules Manual
Revision 1.4

Watcher - Modules Manual [DRAFT] - Rev. 1.4

Contents
Scope of this document..3
1 Modules – Common characteristics..4

1.1 Modules - Common architecture...5
1.2 Modules - Common utilities..6

1.2.1 Database Expiration...7
1.2.2 Statistics output..8

1.3 Dynamic rule system...9
1.3.1 Rule files..9
1.3.2 The superflous_map...9
1.3.3 Transparent refresh...9

1.4 private.bashlib..10
1.5 Other features...10

1.5.1 Self-lockout prevention..10
1.5.1.1 A scenario without self-lockout prevention..10

2 Installing Modules...12
2.1 Preparation...12
2.2 System-logger..12
2.3 Logging & tracing..14

2.3.1 Log files...14
2.3.2 Trace files...14
2.3.3 Logrotate..14

2.3.3.1 The UNTREATED rule..16
3 Operating Modules..17

3.1 Writing rules..17
3.1.1 Rule file format..17
3.1.2 Testing new or changed rules...18

3.2 Dealing with statistics files..19
3.2.1 Interpreting statistics diagrams..20

4 Troubleshooting...22
4.1 Troubleshooting a module...22

5 Module details...24
5.1 Watcher modules..24

5.1.1 Login watcher (WatchLG), token ‘LG’...25
5.1.2 Mail transport watcher (WatchMX), token ‘MX’..25
5.1.3 Mailbox and SASL access watcher (WatchMB), token ‘MB’...25

5.1.3.1 Example passing...26
5.1.4 Web access watcher WatchWB, token ‘WB’...29
5.1.5 Module GeoTrack, token ‘GE’...32

5.1.5.1 GeoCount coprocess...32

Watcher modules 1.4 Page 2 of 32

Watcher - Modules Manual [DRAFT] - Rev. 1.4

Scope of this document
This document explains the modules in the watcher framework.

Documentation is in a separate document, since modules run completely autonomous in the
Watcher framework, if they are once started by the Watcher service.

Modules are related to a particular service (login, mail, pop/imap, web) and are fed by the system-
logger in realtime.

See the Watcher-Master document for explanation of the Watcher-Framework.

Watcher modules 1.4 Page 3 of 32

Watcher - Modules Manual [DRAFT] - Rev. 1.4

1 Modules – Common characteristics
Detect & react …

Watcher modules are the real ‘work horses’ in the Watcher system.
• They provide real-time intrusion detection
• They provide firewall DROP measures upon detection in real-time
• They directly track the system logger stream for a ‘facility’ and measure in

databases for maximum performance instead of slow linear file searches
and writes.

Watcher modules run autonomously if once started by the Watcher master service.
They are just relating to the framework to load common setups and common libraries
from the API.

Furthermore each module has its individual:
• Firewall load on start-up. (LoadXX) called once
• Database expiration tool (ExpireXX) for automatic database housekeeping

to keep the database compact for best performance
• Statistics function (StatXX) for measuring efficiency of all measure you have

been taking.

Watcher modules are tracking for several services (login, mail transport, mailbox
access,WEB server) the events of real attacks for the distinct server system instead
of flooding the firewall with hypothetical lists taken from the internet or other
external resources.

IP addresses will be classified by the way they resolve ‘forward’ and ‘reverse’.
An IP address that does not resolve to an FQDN by any DNS is classified as
‘NXDOMAIN’ (Non-eXistent-DOMAIN) by a DNS; i.e. not registered anywhere.

Watcher modules 1.4 Page 4 of 32

Watcher - Modules Manual [DRAFT] - Rev. 1.4

1.1 Modules - Common architecture

Watcher modules 1.4 Page 5 of 32

Watcher - Modules Manual [DRAFT] - Rev. 1.4

1.2 Modules - Common utilities
Modules have a set of common utilities to conduct standard tasks of every module.

These are:

• Load

• Expire

• Stat

For convenience these names are common in each module and are symlinks to the individual
program that actually conducts the task.

[root@vmd28527 WatchLG]# find . -type l -exec ls -l {} \;
lrwxrwxrwx 1 root root 8 May 1 21:03 ./Expire -> ExpireLG
lrwxrwxrwx 1 root root 6 May 1 21:03 ./Stat -> StatLG
lrwxrwxrwx 1 root root 6 May 1 21:03 ./Load -> LoadLG

[root@vmd28527 WatchMX]# find . -type l -exec ls -l {} \;
lrwxrwxrwx 1 root root 8 May 1 21:03 ./Expire -> ExpireMX
lrwxrwxrwx 1 root root 6 May 1 21:03 ./Stat -> StatMX
lrwxrwxrwx 1 root root 6 May 1 21:03 ./Load -> LoadMX

(a.s.o)

So you must not know the exact program name that fulfills the action.

The ‘loader.conf’ in the Watcher framework takes benefit of this convention during startup:

modules/WatchLG/Load
modules/WatchMX/Load
modules/WatchWB/Load
modules/GeoTrack/Load
dynload/spamhaus/Load
dynload/nixspam/Load
dynload/geo/Load

Watcher modules 1.4 Page 6 of 32

Watcher - Modules Manual [DRAFT] - Rev. 1.4

This is also very handy, if crontab entries must be formulated:

#==================== Watcher ===
MASTER_PATH=/root/bin/Watcher
...
############# Housekeeping ###
...
#------------ Modules ---
#--- Expiration : Once a day
20 01 * * * $MASTER_PATH/modules/WatchLG/Expire >/dev/null 2>&1
25 01 * * * $MASTER_PATH/modules/WatchMX/Expire >/dev/null 2>&1
30 01 * * * $MASTER_PATH/modules/WatchWB/Expire >/dev/null 2>&1
35 01 * * * $MASTER_PATH/modules/GeoTrack/Expire >/dev/null 2>&1

1.2.1 Database Expiration
With time the database get filled more and more with attacker’s IP addresses and DROP information
that in turn will fill the firewall more and more.

Experience shows that a lot of break-in attempts are coming from a NXDOMAIN (Non-eXistend-
Domain); i.e. an IP addresss that is nowhere registered by a legal Domain-Name-Service (DNS).

Keeping these addresses in the database forever is not such a good idea.

So each watcher module has an ‘ExpireXX’ program that can be started via crontab on a regular
basis to cleanup the database. (where XX is the module token ‘LG’ or ‘MX’)

(crontab entries for a weekly cleanup at 00:00 [midnight] on sundays)

0 0 * * 0 <installdir>/modules/<modulename>/Expire

… or ...

0 0 * * 0 <installdir>/modules/<modulename>/Expire <days>

ExpireLG has a standard value of EXPIRATIONDAYS=30 configured in the WatchLG.conf file.

To override this standard value ExpireLG can take a commandline parameter to run it with a lower
value to cut down the level in the database, it it is needed or wanted.

To set a higher value it is recommended to increase the value in the configuration file.

The ExpireXX for the particular module dynamically removes the DROP entries in the firewall. So
there is no need to restart the watcher service after an ExpireXX program ran.

Note, that each ExpireXX is sym-linked to the flat name ‘Expire’ and so can be called by its flat
name; i.e.

Watcher modules 1.4 Page 7 of 32

Watcher - Modules Manual [DRAFT] - Rev. 1.4

0 0 * * 0 <installdir>/modules/<modulename>/Expire

… or ...

0 0 * * 0 <installdir>/modules/<modulename>/Expire <days>

1.2.2 Statistics output
Each module has a utility program ‘StatXX’ to output a statistics file for the individual module.

The StatXX program generates a *.csv file from its module database that can be mailed to a
configured REPORTMAIL email address. See section “Dealing with statistics files” for details.

To configure delivery of statistics data you need to configure a CRONTAB entry in the super-
users’s crontab, that conducts the delivery.

(root’s crontab ...)

#--- Statistics : Once a week
40 02 * * 0 /root/bin/Watcher/modules/WatchMX/Stat >/dev/null 2>&1
50 02 * * 0 /root/bin/Watcher/modules/WatchLG/Stat >/dev/null 2>&1

Like the ‘ExpireXX’ tool the ‘StatXX’ tool is sym-linked to its flat name as ‘Stat’ and so can be
called by its flat name ‘Stat’.

Watcher modules 1.4 Page 8 of 32

Watcher - Modules Manual [DRAFT] - Rev. 1.4

1.3 Dynamic rule system
Regular modules (those that live in $MASTER_PATH/modules/... with a name prefix of ‘Watch..’)
filter all the log lines by ‘rules, that the system-logger is passing in realtime to their individual
listening pipes.

The rules are taken from a subdirectory ‘…/rules’ in the module’s working path and are assembled
into a filter() function, when the module starts:

[root@vmd28527 rules]# pwd
/root/bin/Watcher/modules/WatchMX/rules
[root@vmd28527 rules]# ls
000-Ignore.rule 110-NXDOMAIN-TLS.rule 170-NOQUEUE.rule check-all-rules README-superflous_map
010-scanner.rule 120-NXDOMAIN-SSL.rule 180-SSL-frauds.rule check-rule superflous_map
099-External-block.rule 130-FAKEHOST.rule 300-MB-pass.rule check-super Template-rule
100-NXDOMAIN.rule 150-Host.rule-disabled 500-non-smtp-cmd.rule README

filter() {
…
RULE="NXdomain"
Pattern=': connect from unknown['
if [["$REPLY" =~ "$Pattern"]]; then inject; return $?; fi
…
RULE=FakeHost
Pattern='does not resolve to address'
if [["$REPLY" =~ "$Pattern"]]; then inject; return $?; fi
…
RULE=NO_MATCH
return 0
}

The filter function is a classical ‘rope ladder’. When traversing the collected rules and a match with
a pattern occurs, then an action is taken and filter is exited with the return code from that action.

1.3.1 Rule files
Rules can be order dependent. So it is important … continue …

1.3.2 The superflous_map

1.3.3 Transparent refresh

Watcher modules 1.4 Page 9 of 32

Watcher - Modules Manual [DRAFT] - Rev. 1.4

1.4 private.bashlib

1.5 Other features

1.5.1 Self-lockout prevention
Accessing your ‘root server’ remotely from home or the office across a router to your Internet
Service Provider (ISP) implies the danger of self-lockout.

1.5.1.1 A scenario without self-lockout prevention
Suppose you are trying to open a console with ssh as superuser to do some maintenance on your
‘root server’. For some reason the [CAPS LOCK] key got pressed and your keyboard is in CAPS
LOCK mode when the password for the login is requested, which will in all probability result in a
failed login attempt. Not noticing that ‘CAPS LOCK’ is on for the keyboard and the password input
hides the typed key presses on the console your are repeating the password input a couple of times.

The login scanner (WatchLG) gets notified by sshd about the ‘Failed login for root’ along with the
IP address of your home/office router and treats this as an ‘affair’ with your root server … as it
normally does … which is perfectly ok.

2023-08-03T14:24:43.296 WatchLG[5123]: [Loop: 746] 'Aug 3 14:24:43 vmd28527 sshd[329]: Failed
password for root from <your router IP> port 65293 ssh2'
2023-08-03T14:24:43.300 WatchLG[5123]: [inject] Triggered by rule ['root-login'] ': Failed password
for root'
2023-08-03T14:24:43.347 WatchLG[5123]: [inject] TRUEHOST <your router IP> Port: 65293
2023-08-03T14:24:43.430 WatchLG[5123]: [inject] TRUEHOST <your router IP> 'Initial 4/5, Penalty: 4'
2023-08-03T14:24:43.433 WatchLG[5123]: [inject] Finished for rule ['root-login'], 167/134 ms

Furthermore, in the rules for the login watcher for failed ‘root login’ a penalty of ‘4’
(MAX_AFFAIRS – 1) was specified, that presets the ‘affairs’ to ‘4’.

RULE=root-login
Pattern=': Failed password for root'
#---------------
if [["$REPLY" =~ "$Pattern"]]; then inject 4; return $?; fi

This will result in a ‘timed firewall blocking’ of 2affairs * TIME_SLICE

With a configured TIME_SLICE of 60 seconds (1 minute) your login attempt will be immediately
blocked in the firewall for the next 16 minutes and your router IP will be registered in the database
with an ‘affairs’ count of ‘4’ which 1 below MAX_AFFAIRS.

24 * 60 = 16 * 60 = 960s ~ 16 minutes

If you ###

Watcher modules 1.4 Page 10 of 32

Watcher - Modules Manual [DRAFT] - Rev. 1.4

Watcher modules 1.4 Page 11 of 32

Watcher - Modules Manual [DRAFT] - Rev. 1.4

2 Installing Modules
The watcher service takes some basic system resources and conditions that it can work.

If it comes to installed modules the most important component on the system is the system logger
by which the ‘module readers’ are fed – instead of ‘tail reading’ system specific log files in
/var/log/…

2.1 Preparation
In each module installation directory (modules/WatchXX/... below the Watcher master path) there is
a program named Prep like in the installation directory of the Watcher master.

The Prep script for a module does not have much to do. But it will initialize the database from the
‘Schema’ template for a particular module. During initial installation of the Watcher Master the
Prep scripts are automatically called, if the module’s database does not already exist. So the
preparation of modules is automatic and there is nothing to do for you.

2.2 System-logger
Modules don’t do any ‘tail reading’ or scanning of log files in /var/log/… which is pretty awkward,
if

The system-logger is used as a multiplexer to feed the modules in real-time from the log lines, that
were passed from services to the system-logger.

The module processes are then directly fed by the system-logger (rsyslog, syslog-ng, …) through
FIFOs (‘named pipes’) located on the filesystem with a base path declared as ‘FIFO_BASE’ in the
‘common.conf’ file of the MASTER_PATH as:

• $FIFO_BASE/WatchLG

• $FIFO_BASE/WatchMX & $FIFO_BASE/WatchMB (companion process of WatchMX)

The benefit from this is, that log messages don’t get lost if any of the Watcher modules is going
offline for a while: e.g. for database maintenance, update or whatever. The system logger continues
to fill the FIFO with messages that it has picked up for a ‘facility’ from a particular service process;
e.g. from the Postfix mail transport agent [MTA].

If the Watcher module comes back online and operational after it has been stopped for some
maintenance action, then the FIFO is read just with some delay but no loss occurs, since the FIFOs
buffer the messages from the services.

Watcher modules 1.4 Page 12 of 32

Watcher - Modules Manual [DRAFT] - Rev. 1.4

The FIFO buffer size is determined by a system parameter ‘fs.pipe-max-size’ in the Linux kernel
and has a usual size of 1 MiB:

sysctl -a | grep pipe-max

fs.pipe-max-size = 1048576

The FIFO size can be temporarily changed/extended by:

sysctl fs.pipe-max-size = <new size in bytes>

In order to survive a reboot this must be specified in ‘/etc/sysctl.conf’ to overwrite the system
default.

Watcher modules 1.4 Page 13 of 32

Watcher - Modules Manual [DRAFT] - Rev. 1.4

2.3 Logging & tracing
Watcher modules write individual log- and trace-files.

2.3.1 Log files
Log files are kept below /var/log/… as <Module name>.log

The log file path is configured in <Module name>.conf file in the modules installation directory
below $MASTER_PATH/modules.

If a log file does not exist if the watcher module starts then the particular log file will be created
automatically and set to R/W access exclusively for the super-user.

2.3.2 Trace files
Trace files are kept in the module directory(!) as <Module name>.trace

If the trace file does not exist when the watcher module starts then the particular trace file is
established and set to R/W access exclusively for the super-user.

Take care that trace files are only being written, if the TRACE variable is set to a NON-EMPTY
string in the modules configuration file. i.e. specifying ‘TRACE=’ turns tracing ‘off’; specifying
‘TRACE=hooray’ turns tracing ‘on’. So don’t get fooled by setting “TRACE=0” and thinking
tracing is now ‘off’ .

Tracing is not necessarily needed for normal operation. But tracing is very helpful for checking new
individual filter rules.

Take into account, that tracing generates pretty much output and the trace files can grow rapidly to
tremendous sizes. The logrotate should probably be set to ‘weekly’ and/or a ‘maxage’ no longer
than 30 days. Also note that writing that many tracing information to disk will degrade performance
of the Watcher module a little.

Furthermore, if tracing is turned ‘off’ for a module the ‘Trace’ utility program provides no output
and terminates with a notification, that tracing for the module is turned ‘off’.

[root@vmd28527 ~]# Trace LG
Tracing for LG is off

2.3.3 Logrotate
For housekeeping of the log- and trace-files logrotate configuration files should be set up. In
particular if tracing is configured to be ‘on’ for a module the trace output files can grow relatively

Watcher modules 1.4 Page 14 of 32

Watcher - Modules Manual [DRAFT] - Rev. 1.4

quick to tremendous sizes as they track the processing of the Real-time Intrusion Detection
System (RIDS).

On RedHat-style systems logrotate configuration files are in /etc/logrotate.d.

By making use of the 2-letter module tokens (LG,MX,WB) and naming conventions all Watcher
related logrotates can be formulated in just one file:

[root@vmd28527 logrotate.d]# cat Watcher

/etc/logrotate.d/Watcher
#
Module log files ...
#
/var/log/Watch??.log {

monthly
}

#
Module trace files ... in $MASTER_PATH/modules
#|..MASTER_PATH..|
#vvvvvvvvvvvvvv
/root/bin/Watcher/modules/Watch??/Watch??.trace {

weekly
}

Watcher modules 1.4 Page 15 of 32

Watcher - Modules Manual [DRAFT] - Rev. 1.4

2.3.3.1 The UNTREATED rule
The UNTREATED rule is an internally hard-coded rule inside of each module code.

If none of the configured custom rules matched in the ‘filter’ function then the UNTREATED rule
acts as a ‘catch all’ and outputs the log line into the module’s trace file:

Examples from an excerpt of the WatchLG.trace file:

1 20201115T08:02:23 WatchLG[13117]: [UNTREATED] 'Nov 15 08:02:23 vmd28527
sshd[20561]: Unable to negotiate with 139.162.247.102 port 50038: no matching host key
type found. Their offer: ssh-dss [preauth]'

2 20201116T10:51:51 WatchLG[1654]: [UNTREATED] 'Nov 16 09:51:33 vmd28527
polkitd[535]: Loading rules from directory /etc/polkit-1/rules.d'
20201116T10:51:51 WatchLG[1654]: [UNTREATED] 'Nov 16 09:51:33 vmd28527
polkitd[535]: Loading rules from directory /usr/share/polkit-1/rules.d'
20201116T10:51:51 WatchLG[1654]: [UNTREATED] 'Nov 16 09:51:34 vmd28527
polkitd[535]: Finished loading, compiling and executing 9 rules'

If you find “[UNTREATED]” remarks in a module’s trace file you have 2 options:

1. Write a rule, that handles the event in the ‘filter’ function
Note: This makes only sense if there is an IP address in the log line as shown in example 1.

2. Drop a line into the ‘superflous_map’ file that resides in the ‘rules’ directory along with the
rules.
Note: Entries in the ‘superflous_map’ are REGEX expressions and special REGEX
characters must be escaped. So to suppress lines from the ‘polkitd’ plus the following
process number in square brackets you have to formulate a line as polkitd\[in the
superflous_map file.

Watcher modules 1.4 Page 16 of 32

Watcher - Modules Manual [DRAFT] - Rev. 1.4

3 Operating Modules

3.1 Writing rules
Prior to revision 1.2 the filter rules were hard-coded in each particular Watcher module and are
configured for the log output of ‘Postfix’ and ‘DBmail’.

With Watcher revision 1.2 the dynamic rule system was introduced. This means, that rules now
reside in external files and will be dynamically assembled to a filter chain, if the module starts.

In Watcher 1.3 the decision block was simplified and replaced by an internal bash command:

 ‘[[…]]’ along with the expression match operator ‘=~’

This tremendously speeds up the traversal of the ‘rule rope ladder’ in the ‘filter’ function.

Watcher V1.2 - old Watcher V1.3 - new
RULE=root-login
Pattern=": Failed password for root"
#--------- Decision block ------
result=`echo "$REPLY"|grep -E "($Pattern)"`
if [! -z "$result"]
then : echo "--- Matched rule $RULE ---"

inject
return $?

fi

RULE=root-login
Pattern=": Failed password for root"
#------- Decision line --------
if [[“$REPLY” =~ “$Pattern”]]; then inject; return $?; fi

• Pattern was actually a REGEX
• Transport of the log line by ‘echo’
• Call of transient program ‘grep’

• Pattern is now a simple string
• String compare uses an internal bash function
• The decision is formulated as a ‘one-liner’

Benefit: About 30 times faster

The rule sets come still pre-configured for ‘sshd’, ‘postfix’, ‘dbmail’ & ‘apache’ and with the
‘dynamic rule system’ can now be adapted to a specific MTA and/or POP/IMAP mailbox service of
choice; e.g. if the also popular mailbox service ‘DoveCot’ and the MTA ‘Exim’ is used on a
particular system.

3.1.1 Rule file format
Rules can be ‘order dependent’; i.e. a more specific rule has to precede a more common rule.
Therefore rules are stored in files with a 3-digit number prefix in the range of 000 to 999:

[root@vmd28527 rules]# ls -1 [0-9]*
090-Break_in.rule
100-root-login.rule
150-NonPriv-invalid.rule
160-NonPriv-failed-existing.rule

Watcher modules 1.4 Page 17 of 32

Watcher - Modules Manual [DRAFT] - Rev. 1.4

It is possible to store several rules in a single rule file as long as the order of rules follows the ‘more
specific rule before more common rule’ requirement is taken into account.

[root@vmd28527 rules]# cat 100-root-login.rule
RULE=root-login
Pattern=": Failed password for root"
#------- Decision --------
if [[“$REPLY” =~ “$Pattern”]]; then inject; return $?; fi

[root@vmd28527 rules]# cat 110-simple_user-login.rule
RULE=simple-login
Pattern=": Failed password for"
#------- Decision --------
if [[“$REPLY” =~ “$Pattern”]]; then inject; return $?; fi

These two rules can be combined in a single file if you like that better:

[root@vmd28527 rules]# cat 100-failed-login.rule
RULE=root-login
Pattern=": Failed password for root"
#------- Decision --------
if [[“$REPLY” =~ “$Pattern”]]; then inject; return $?; fi

RULE=simple-login
Pattern=": Failed password for"
#------- Decision --------
if [[“$REPLY” =~ “$Pattern”]]; then inject; return $?; fi

3.1.2 Testing new or changed rules
The ‘rules’ directory contains two small scripts ‘check-rule’ and ‘check-all-rules’, that you can
run on the ‘rules’ directory in order to check, that a rule is syntactically clean or all your rules are
syntactically clean. It is strongly recommended, that you use this syntax-check as the rules are
assembled into the ‘filter’ function by the ./mkfilter script and then the generated ‘filter’ function is
sourced by the module. With syntactically wrong rules in the ‘filter’ file the module might fail
starting or can behave erratically.

Watcher modules 1.4 Page 18 of 32

Watcher - Modules Manual [DRAFT] - Rev. 1.4

3.2 Dealing with statistics files
Each module provides a statistics script ‘StatXX’.

The module creates an output from your module’s database contents as a relation of ‘introduced’
(detected) and ‘dropped’ IP addresses in the time range that the expiration process of the module has
left.

The statistics script creates a *.csv file that is sent to the configured report mail address covered by
the $REPORTMAIL variable. This variable is set to a global REPORTMAIL variable in the watcher
master configuration ‘watcher.conf’ and can be overwritten in the module’s WatchXX.conf file
located in the module path. For instance, if you (as the systems administrator) not interested in the
statistics of attacks on the mail system but the mail system administrator wants to see efficiency of
the firewall related with the mail system attacks.

To get statistics mailed setup a CRONTAB entry in the super-user’s crontab:

#============ Watcher ===
...
#--- Statistics : Once a week
40 02 * * 0 cd /root/bin/Watcher/modules/WatchMX && ./StatMX >/dev/null 2>&1
50 02 * * 0 cd /root/bin/Watcher/modules/WatchLG && ./StatLG >/dev/null 2>&1

The configured recipient will then regularly find a Statistics file in *.csv format in his mailbox with
the subject: “Statistics-XX <a timestamp>”

By clicking on the attachment your favorite spread-sheet program should open and offer the CSV
file to be read into a new spread-sheet.

After the statistics data was read-in you may then select from the ‘diagram functions’ the creation of
a diagram of your choice.

You may then annotate the diagram to your taste, include trendlines, calculated average and so on.
Finally you may save and/or print the document and store it to review the efficiency of your
measures.

Watcher modules 1.4 Page 19 of 32

Watcher - Modules Manual [DRAFT] - Rev. 1.4

3.2.1 Interpreting statistics diagrams
Below is a statistics diagram with data from the MX (mail) module’s database.

Watcher modules 1.4 Page 20 of 32

20
20

-09
-19

20
20

-10
-07

20
20

-10
-11

20
20

-10
-15

20
20

-10
-19

20
20

-10
-23

20
20

-10
-27

20
20

-10
-31

20
20

-11
-04

20
20

-11
-08

20
20

-11
-12

20
20

-11
-16

20
20

-11
-20

0

50

100

150

200

250

300

350

Attacks 19-Sep-2020 ... 20-Nov-2020 (Login)

Introduced
Dropped

At
ta

ck
s

Sample statistics diagram (Login, LG module data)

20
20

-10
-12

20
20

-10
-18

20
20

-10
-20

20
20

-10
-22

20
20

-10
-24

20
20

-10
-26

20
20

-10
-28

20
20

-10
-30

20
20

-11
-01

20
20

-11
-03

20
20

-11
-05

20
20

-11
-07

20
20

-11
-09

20
20

-11
-11

20
20

-11
-13

20
20

-11
-15

20
20

-11
-17

20
20

-11
-19

20
20

-11
-21

0

200

400

600

800

1000

1200

Attacks 12-Oct-2020 ... 21-Nov-2020 [MTA]

Introduced
Dropped

M
TA

 a
tta

ck
s

(Sample mail attacks diagram)

Watcher - Modules Manual [DRAFT] - Rev. 1.4

The diagram looks a bit odd at first view, since it shows a tremendous number of ‘detects’
(introduced) with a relatively little number of firewall DROPs – but this is fairly normal for mail
attacks. SPAMers tend to use the scheme ‘fire-and-forget’; i.e. they fire their attempt once against a
mail server and never come back as legal MTAs usually do to retry the mail transfer. Although
NXDOMAINs (and FAKEHOSTs as well) get a preset of MAXAFFAIRS-1 that results in a firewall
DROP on second attempt there is no second attempt that would cause the DROP in the firewall for
the incoming IP address. This is why the ‘introduce’ values are so high.

Watcher modules 1.4 Page 21 of 32

Watcher - Modules Manual [DRAFT] - Rev. 1.4

4 Troubleshooting
Nearly all programs in the Watcher suite have a particular heading in the two lines straight below
the ‘shebang’ .

#!/bin/bash
if ["$1" == 'debug']; then set -x; shift; fi
if ["$1" == 'debug2']; then set -xvT; shift; fi

This means, that you may call a program, with a first parameter of either ‘debug’ or ‘debug2’. For
programs that usually take parameter there parameters then follow the ‘debug/debug2’ key as usual.

• ‘debug’ will just turn on the usual Bash execution tracing.

• ‘debug2 additionally turns on verbose Bash tracing (code dump) and tracing of functions.

So one can see what the code is doing on a particular platform (RHEL, Debian, …) or you can
debug a self-constructed dynloader to fitness.

4.1 Troubleshooting a module
For the modules (WatchLG, WatchMX, …) some care must be takes as modules read from their
assigned FIFOs and there can only be one reader process on the FIFOs reading end – otherwise
multiple readers would steal FIFO contents from one another and the result is reading trash.

To troubleshoot a module there a two possibilities.

1. Stop watcher entirely: ‘# service watcher stop’
The drawback is, that all module processes stop processing their FIFOs, which you probably
not want in the first place. But this option makes sense, if a bug in the common code
(common.bashlib) is suspected.

2. Kill a specific Watcher process: ‘# killall WatchXX’

Note, that regardless which way you stop a Watcher module will not affect the firewall. The
services also continue reporting to the system logger, that continues with filling the module’s pipe.
The pipe buffers all messages that are coming from the system-logger. There is no loss …

Watcher modules 1.4 Page 22 of 32

Watcher - Modules Manual [DRAFT] - Rev. 1.4

To do your realtime tracing of the module to see for the trouble go to the module path:

cd $MASTERPATH/module/WatchXX

Modules take no parameters as they are configured by their corresponding *.conf file inside the
module path. So you might check if the *.conf file is free from syntax errors at first simply
‘sourcing’ it:

source WatchXX.conf

If there are no syntax errors pointed out everything is ready for a debug session.

Then start the module manually in a debug mode of your choice:

./WatchXX debug … (or debug2)

A lot of information will rush across the screen and even a lot more , if debug2 was chosen as the
debug mode as this tracks traversing of functions as well. Scroll back in the output and see for any
errors that Bash or any of the ‘transient calls’ to external programs have caused.

You might want to open a second terminal to see what the ‘trace’ functions write to the modules
*.trace file. Then start a ‘Trace XX’ command in this other terminal to get a condensed output from
the debug session.

Watcher modules 1.4 Page 23 of 32

Watcher - Modules Manual [DRAFT] - Rev. 1.4

5 Module details
As explained in the chapter ‘Modules – Common characteristics’ all modules share a common
architecture. But because

5.1 Watcher modules
The watcher modules WatchLG & WatchMX (with its companion WatchMB with a somewhat
simplified architecture) track the input to several log files on the system. Infact they don‘t read the
actual log file but are fed directly by the system logger (rsyslog, syslog-ng,…) through FIFOs
(‚named pipes‘) .

This way the system logger can feed the Watcher modules in realtime

So there are no troubles with ‚tail reading‘ of system specific files. But the system logger must be
configured to write the FIFOs (‚named pipes‘) that the modules need in order to read from them.
Which log files are affected on the particular system is entirely transparent to the Watcher module.
The association in the system logger configuration is directly made between the system-logger’s
‘facility’ and the module’s FIFO of the specific module. This makes the Watcher module system-
independent and no care must be taken, whether the system is DEBIAN-, SuSE- or RedHat-style.

rsyslog … (/etc/rsyslog.conf)

...
The authpriv file has restricted access.
authpriv.* /var/log/secure

|/var/log/.pipes/WatchLG

Log all the mail messages in one place.
mail.* /var/log/maillog

|/var/log/.pipes/WatchMX
...

syslog-ng … (/etc/syslog-ng/syslog-ng.conf)

...
destination d_auth { file("/var/log/secure");
 pipe("/var/log/.pipes/WatchLG");
 };
destination d_mail { file("/var/log/maillog");
 pipe("/var/log/.pipes/WatchMX");
 };
...

Watcher modules 1.4 Page 24 of 32

Watcher - Modules Manual [DRAFT] - Rev. 1.4

(Restart the system logger after these changes)

5.1.1 Login watcher (WatchLG), token ‘LG’
The ‘login watcher” (WatchLG) is the simplest of all watcher modules.

It chiefly tracks the failed login attempts with a counter in the database for each IP address. If a
number of maximum failed attempts (in the Watcher nomenclature called ‘affairs’) it records a
‘DROP’ in the database and immediately fires a DROP into the firewall to stop the aggressor
instantly. The standard value for MAX_AFFAIRS is 5 – but can be changed in the module’s
WatchXX.conf file to a value of your choice.

5.1.2 Mail transport watcher (WatchMX), token ‘MX’
The mail transport watcher tracks the input to its exclusive FIFO in $FIFO_BASE/WatchMX as
specified as ‘FIFO_BASE’ in the ‘common.conf’ file.

The WatchMX module is a lot more complex than the LG watcher module that only has to take care
of the system’s login process. WatchMX gets everything that is logged by mail related system
services (PostFix, Exim, Dbmail, DoveCot …) to the ‘mail.*’ facility of the system-logger that
usually goes to the /var/log/maillog log file.

Different mailing system (MTAs) with very different messaging to the system logger brings up the
need for very individual filter rules for the specific MTA that is used on the system: PostFix,
QMAIL, Exim, … etc.

In the module’s delivery package the rules are configured for PostFix [MTA] and DBmail [mailbox
service; POP, IMAP, ...]

5.1.3 Mailbox and SASL access watcher (WatchMB), token ‘MB’
WatchMB is the companion process of WatchMX and will be automatically started by WatchMX.
So there is no need to start the WatchMB process during the start-up phase.

WatchMB gets maillog messages passed from WatchMX that have to do with authentication to
mailbox access via POP & IMAP (similar to ‘login’ tracking) or transport authentication via SASL
to the MTA.

If WatchMX sees by a filter rule that this is an issue of break-in attempt the rule forwards the
maillog line to the ‘named pipe’ that WatchMB reads for further processing in WatchMB.

Watcher modules 1.4 Page 25 of 32

Watcher - Modules Manual [DRAFT] - Rev. 1.4

Wrong passwords in mailbox access or wrong certificates in case of SSL/TLS transport requests are
good examples for this.

(Rule file of WatchMX in order to forward to WatchMB; i.e. ‘pass-on rules’ for WatchMB)
RULE="Mailbox-Breaker"
Pattern='Error\:\[pop3\]'
#--------
if [["$REPLY" =~ "$Pattern"]]; then passon; return 2; fi

RULE=SMTPS
Pattern='SSL_accept error from unknown\['
#--------
if [["$REPLY" =~ "$Pattern"]]; then passon; return 2; fi

Note: WatchMX and the companion process WatchMB share the same database but have of course
separate FIFOs in $FIFO_BASE/… (default: /var/log/.pipes)

Also note, that the companion process WatchMB has it own trace file ‘WatchMB.trace’ in its
module path. Thus one can watch the trace with:

Trace MB

This way one can see -first of all- what the MX process has passed to WatchMB process.

Moreover, one can see, that:

• the passing between MX and MB works

• the MX watcher has a passing rule at all for events, that is not of primary interest for the MX
watcher; e.g. SASL log-in failures to POP/IMAP mailboxes

• the MB watcher has and adequate filter rule for the stuff, that MX has passed to MB; i.e.
there must be a rule among the rules for MB that has an identical “Pattern=…” specified.

5.1.3.1 Example passing
It is nice to watch this with two consoles where the one runs a ‘Trace MX’ and the other console
runs a ‘Trace MB’, since it is not a good idea to pass-on a log line to the MB scanner for which it
has no filter rule to finish the processing.

The MX watcher has a ‘passon’ function in its ‘private.bashlib’:

Forward a log line to the WatchMB scanner
passon() {

Watcher modules 1.4 Page 26 of 32

Watcher - Modules Manual [DRAFT] - Rev. 1.4

local funtag="[${FUNCNAME[0]}]"

 echo "$REPLY" >> $FIFO_BASE/WatchMB
 trace "$funtag Passed to WatchMB ..."
}

In a rule file ‘300-MB-pass.rule’ in the MX watcher has the following rule is established:

Finally pass all 'SASL' stuff to WatchMB
RULE="SASL-affair"
Pattern=': SASL'
#--------------
if [["$REPLY" =~ "$Pattern"]]; then passon; return 2; fi

This will pass-on every log line with the pattern ': SASL' to the MB watcher’s pipe for further
processing. The MX watcher so is very quickly done with the job in a few milliseconds.

Watcher modules 1.4 Page 27 of 32

Watcher - Modules Manual [DRAFT] - Rev. 1.4

On the sending side in the WatchMX process ...

(excerpt from the ‘WatchMX.trace’ file)

…
2023-04-30T11:27:07.444 WatchMX[18669]: [Loop: 2448] 'Apr 30 11:27:07 vmd28527
postfix/smtpd[9044]: warning: 93-42-155-2.ip87.fastwebnet.it[93.42.155.2]: SASL LOGIN
authentication failed: authentication failure'
2023-04-30T11:27:07.449 WatchMX[18669]: [passon] Passed to WatchMB ... 11/2 ms
…

The entire scanner loop consumed only 11ms in the MX watcher of which the ‘processing’ took
only 2ms.

… on the receiving WatchMB side …

(excerpt from the ‘WatchMB.trace’ file for this action)

…
2023-04-30T11:27:07.452 WatchMB[18738]: [Loop: 8] 'Apr 30 11:27:07 vmd28527 postfix/smtpd[9044]:
warning: 93-42-155-2.ip87.fastwebnet.it[93.42.155.2]: SASL LOGIN authentication failed:
authentication failure'
2023-04-30T11:27:07.456 WatchMB[18738]: [inject] Triggered by rule ['SASL-login-failed'] ': SASL
LOGIN authentication failed'
2023-04-30T11:27:07.487 WatchMB[18738]: [inject] TRUEHOST 93.42.155.2, MB-Class: Breaker
2023-04-30T11:27:07.513 WatchMB[18738]: [inject] TRUEHOST 93.42.155.2 'Initial 1/5'
2023-04-30T11:27:07.517 WatchMB[18738]: [inject] Finished for rule ['SASL-login-failed'], 67/60 ms
…

WatchMB has read the log line 3ms later from its pipe (.449@MX > .452@MB). The filter rules in
the MB watcher have identified the log line by the filter rule 'SASL-login-failed'. Let’s see where this is
in the filter rules of the MB.

[root@vmd28527 WatchMB]# pwd
/root/bin/Watcher/modules/WatchMB
[root@vmd28527 WatchMB]# cd rules
[root@vmd28527 rules]# grep 'SASL-login-failed' *.rule
200-SASL.rule:RULE=SASL-login-failed

O.K … found that rule in the ‘200-SASL.rule’ file

(snippet from the ‘200-SASL.rule’ file)

…
RULE=SASL-login-failed
Pattern=": SASL LOGIN authentication failed"
if [["$REPLY" =~ "$Pattern"]]; then inject; return $?; fi
…

What the MX watcher has identified by the pattern ‘: SASL’ and then has passed to the
MB watcher pipe was identified by the MB watcher in more detail as:

Watcher modules 1.4 Page 28 of 32

mailto:452@MB
mailto:449@MX

Watcher - Modules Manual [DRAFT] - Rev. 1.4

 ": SASL LOGIN authentication failed"

and through the match with the pattern the injector function ‘inject’ was called with the complete
log line that the pipe reader always stores in the standard variable ‘REPLY’ after reading from the
pipe. This variable is global in the scope of the Watcher’s scanner loop. Thus nothing must be
passed to any function or anywhere else.

[inject] TRUEHOST 93.42.155.2, MB-Class: Breaker
[inject] TRUEHOST 93.42.155.2 'Initial 1/5'

The injector ‘inject’ has classified the IP address being a ‘TRUEHOST’ which means, that the
forward and reverse IP address resolution leads back to the IP address that was detected. Finally the
injector has registered this IP address in the WatchMB database with ‘initial’ state and an access
count of ‘1’ (of max. 5 ‘affairs’). Further ‘affairs’ with this IP address will then be counted in the
database until this IP address will be set to state ‘DROP’ in the database. With the ‘DROP’ state set
for this IP address the next occurrence will result in an action, that puts the IP address immediately
into the firewall with a DROP state.

5.1.4 Web access watcher WatchWB, token ‘WB’
The module WatchWB is new with Watcher revision 1.3.

WatchWB is the most complex scanner in the series, since WEB servers can establish and control
many ‘instances’ (vhosts) on a single physical server.

For the sake of security every web server instance must write its own exclusive ‘ErrorLog’ and
‘AccessLog’ to which only the customer for this instance (vhost) should have access.

i.e. a logging structure for the individual customers (vhosts) must be established on the web server:

➔ /var/www/logs/...

● .../customer1/...

➔ error.log

➔ requests.log

● .../customer2/…

➔ error.log

➔ request.log

… and so on …

Watcher modules 1.4 Page 29 of 32

Watcher - Modules Manual [DRAFT] - Rev. 1.4

Writing everything into a single central error-log and access-log would be easy for the web server
administrator. But this would also means, that all customers must have access to such a central log
information and so all customers can see what happens in other customers web instances – which is
a serious infringement of common security rules, though.

So the separation of logging information must look like this in the ‘vhost-customerXX’ definition in
the webserver configuration:

But Watcher modules expect to be fed by their exclusive FIFOs and the trouble with the logging
from an Apache web server is, that it can only pipe to PROGRAMs – but not to FIFOs directly.

The solution is having the Apache web server piping to ‘logger’ with an exclusive syslog ‘facility’.

First of all the system logger (rsyslog or syslog-ng) must be prepared to accept the web server
(httpd) log for an exclusive facility. For the purpose the user defined facility ‘local2’ was chosen.

rsyslog
Provide a line for the chosen facility ‘local2’ in /etc/rsyslog.conf

local2.* |/var/log/.pipes/WatchWB

syslog-ng
Provide a configuration file in /etc/syslog-ng/conf.d/httpd.conf with the following contents:

#
WEB server facilities ...
#
template iso_date {
 template("${ISODATE} ${HOST} ${MSGHDR}${MSG}\n");
 template_escape(no);
};

Watcher modules 1.4 Page 30 of 32

(Example: /etc/httpd/conf.d/vhost-customer1.conf)
<VirtualHost *:80>
 ServerName comserve-it-services.de
 ServerAlias www.comserve-it-services.de

 DocumentRoot /var/www/html/Joomla/comserve
 ErrorLog /var/www/logs/comserve/error.log
 CustomLog /var/www/logs/comserve/requests.log combined
.
. and so on ...
.

Watcher - Modules Manual [DRAFT] - Rev. 1.4

destination d_weblog { pipe("/var/log/.pipes/WatchWB" template(iso_date)); };
filter f_weblog { facility(local2); };
log { source(s_sys); filter(f_weblog); destination(d_weblog); };

Ahead from this preparation of the system logger the web sites in the ‘vhost-xxxx’ files can be
configured …

To connect the web server request logs for an instance a site specific ‘LogFormat’ and ‘CustomLog’
clause is needed in the vhost configuration for the instance.

#
Fed to the system-logger that provides the timestamp
So '%t' can/should be ommited from the LogFormat
#
LogFormat "%h %l %u \"%r\" %>s %b \"%{Referer}i\" \"%{User-agent}i\" [Instance: %v:%p]@joomla" instancelog
CustomLog "|/bin/logger -t httpd -p local2.notice" instancelog

Add the above line sequence after the ‘CustomLog’ clause that writes the log for the instance to a
local file.

Note, that the LogFormat for this webserver instance must provide a tag for the instance that is
logging. This is done by the ‘[Instance: %v:%p]@instancetype’ tag where ‘%v’ is the vhost derived
from the ‘Servername’ specified in the vhost configuration file and ‘%p’ is the port number on
which the particular request took place. Attach this ‘instance tag’ at the end of ‘LogFormat’ line
along with the @instancetype marker, where instancetype is the one that you have assigned with the
WBinstance tool to this instance (site) when you have configured your WEB instances in the
WatchWB module during the module preparation.

With this preparation of the system logger and configuration of the web server instance in the vhost
file the system logger and web server can/must be both restarted:

service <system logger> restart

service <web server> restart

… or …

systemctl restart <system-logger>

systemctl restart <webserver>

where:

Watcher modules 1.4 Page 31 of 32

Watcher - Modules Manual [DRAFT] - Rev. 1.4

• <system logger> is the system logger that you are using – either ‘rsyslog’ or ‘syslog-ng’.

• <web server> is the name of the web server service for your particular system.

◦ on RHEL and clones this is ‘httpd’

◦ on Debian and offsprings (like Ubuntu) this is usually ‘apache2’

Finally check in your WatchWB.trace file in the module’s directory the logging result that you get:

cd <MASTER_PATH>/modules/WatchWB

tail -100f WatchWB.trace

… or just call the helper program ‘Trace’ with a module token; e.g.

Trace {LG|MX|MB|WB}

If everthing is fine do all the same for other web server instances by modifying the individual vhost-
xxxx file for the instance as explained above.

5.1.5 Module GeoTrack, token ‘GE’
The GeoTrack module is the new kid in town with Watcher release 1.4.

Actually GeoTrack is a pseudo-module as it does not supply a particular system service like console
login (sshd), mail transport (MTA) & mailbox services (POP/IMAP) or WEB server (HTTP).

GeoTrack is a sink for the other ‘regular modules’ ...

5.1.5.1 GeoCount coprocess

Watcher modules 1.4 Page 32 of 32

	Scope of this document
	1 Modules – Common characteristics
	1.1 Modules - Common architecture
	1.2 Modules - Common utilities
	1.2.1 Database Expiration
	1.2.2 Statistics output

	1.3 Dynamic rule system
	1.3.1 Rule files
	1.3.2 The superflous_map
	1.3.3 Transparent refresh

	1.4 private.bashlib
	1.5 Other features
	1.5.1 Self-lockout prevention
	1.5.1.1 A scenario without self-lockout prevention

	2 Installing Modules
	2.1 Preparation
	2.2 System-logger
	2.3 Logging & tracing
	2.3.1 Log files
	2.3.2 Trace files
	2.3.3 Logrotate
	2.3.3.1 The UNTREATED rule

	3 Operating Modules
	3.1 Writing rules
	3.1.1 Rule file format
	3.1.2 Testing new or changed rules

	3.2 Dealing with statistics files
	3.2.1 Interpreting statistics diagrams

	4 Troubleshooting
	4.1 Troubleshooting a module

	5 Module details
	5.1 Watcher modules
	5.1.1 Login watcher (WatchLG), token ‘LG’
	5.1.2 Mail transport watcher (WatchMX), token ‘MX’
	5.1.3 Mailbox and SASL access watcher (WatchMB), token ‘MB’
	5.1.3.1 Example passing

	5.1.4 Web access watcher WatchWB, token ‘WB’
	5.1.5 Module GeoTrack, token ‘GE’
	5.1.5.1 GeoCount coprocess

