
Watcher - Master manual - Rev. 1.4

Watcher
A real-time intrusion detection system and ‘superordinate
firewall management’ solution for Linux server systems.

... keep network bandits away …

Watcher Master 1.4 Page 1 of 46

Watcher - Master manual - Rev. 1.4

Watcher - Master manual

Revision 1.4

Watcher Master 1.4 Page 2 of 46

Watcher - Master manual - Rev. 1.4

Philosophies

Kiss … Keep it small & simple.
Easy is beautiful.

Do one thing and do it well.
Everything should be made as simple as possible “ –

but not simpler ” (Albert Einstein)

Every work of art has one indispensable mark “ …

the center of it is simple, however much the
fulfillment may be complicated. ” (Gilbert K. Chesterton)

Watcher Master 1.4 Page 3 of 46

Watcher - Master manual - Rev. 1.4

Contents
Scope of this document..6
1 Preface...7

1.1 Why Watcher?..8
1.2 What’s the audience for Watcher?...9
1.3 What does Watcher need?..10

1.3.1 Firewall..10
1.3.2 System logger...10

1.4 What does Watcher do?..11
1.5 How does Watcher do this?..11
1.6 How is Watcher constructed?...12
1.7 What’s new in this revision??..13

1.7.1 Geo-Blocking & Geo-Tracking..13
2 Overview...14

2.1 Overall architecture..14
2.2 Watcher master...14
2.3 Watcher modules..16
2.4 Dynloaders...16

3 Installating Watcher...17
3.1 Pre-installation considerations...17

3.1.1 Turning off SELINUX...17
3.1.2 Switching to syslog-ng...17

3.2 Install path & unpacking..17
3.3 Preparation...18

3.3.1 Needed programs...19
3.3.2 Toolpath..19

4 Operation Manual..20
4.1 Watcher master operation...20

4.1.1 Starting and stopping the watcher service..20
4.1.2 Maintaining static lists (blacklist, whitelist)..21

5 Common framework features..23
5.1 Logging & Tracing...23
5.2 Debugging aid..24
5.3 Runtime IPsets...25

5.3.1 The ‘tarpit’ set..25
5.3.2 The ‘custody’ set..26
5.3.3 The ‘validate’ (pseudo-)set...26

6 Appendix A - Additional information..27
6.1 Watcher directory structure..27
6.2 Watcher Toolbox..27

6.2.1 Informational commands...28
6.2.1.1 Trace...28
6.2.1.2 Watcher-Report...28

6.2.2 Firewall commands..28
6.2.2.1 Blacklist..28
6.2.2.2 Whitelist...28

6.2.3 Measuring commands..29

Watcher Master 1.4 Page 4 of 46

Watcher - Master manual - Rev. 1.4

6.2.3.1 Attackrate (experimental)...29
6.2.3.2 Procrate...29

6.2.4 Navigation commands..29
6.2.4.1 Masterpath..29
6.2.4.2 Module..30
6.2.4.3 Dynload..30
6.2.4.4 Rules...30

6.2.5 Other commands..31
6.2.5.1 Freeme..31
6.2.5.2 MyFritzbox...31
6.2.5.3 MyRouter..32
6.2.5.4 Refresh..32

6.3 Dynloaders...34
6.3.1 Repeated dynloader calls..35

6.4 Rolling your own custom dynloader..37
7 Appendix B – Other systems...41

7.1 Debian..42
7.2 Ubuntu (Server edition)...42
7.3 SuSE...43

Watcher Master 1.4 Page 5 of 46

Watcher - Master manual - Rev. 1.4

Scope of this document
This document explains the Watcher framework which provides the basis for everything that is
running in the Watcher framework.

For the service related modules there is a separate document ‘Watcher modules’, that explains the
modules in detail; i.e. their construction, maintenance & operation, etc. In this document only the
way how modules are integrated into the framework is outlined in a terse manner.

Watcher is chiefly designed for so-called ‘root servers’ that are running million-wise as ‘exposed
hosts’ as rented computer systems in data centers to provide ‘internet presence’ for freelancers,
small companies and private persons.

Dynamic loaders are are treated as part of the framework and are discussed in the section
‘Dynloader’.

Watcher Master 1.4 Page 6 of 46

Watcher - Master manual - Rev. 1.4

1 Preface

• Why wait that a burglar or an attacker of a computer system can disturb
your running services or overload it with pointless or even knowingly
malicious requests?

• Moreover, why have the services to be in charge of defending themselves
from burglars and attackers?

Having bandits rejected right at the entry before they can mess with the services on the computer
system is the far better solution, since it preserves the performance of your services.

The good thing with computer networks is, that they are organized by transferring ‚packets‘ with
determined structure and the specific services have ‚port numbers’ by which they are identified.

A usual ‚packet‘ transferred by IP (‚Internet Protocol‘) for IP V4 looks about like this …

IP header
Source IP addr
177.15.238.16

Target IP addr.
98.73.115.4

Protocol bits
tcp, udp, ...

... other transport
information …

TCP/UDP protocol header
Source port
xxxxx

Service (dest.) port
25

Sequence number
nnnnnnn

... other transport
information …

Data block

The information in the header of the packet is what the ‚routing‘ deals with to take the ‚data‘ to the
‘service’ for processing.

Firewalls in between use the header information to allow or deny the transport of a packet – that‘s
all what a firewall does in principle.

So any incoming data packet identifies the ‚requestor‘ by its ‚source IP address‘ and the ‚service
port‘ classifies what the requestor is up to do on the target system.

By tracking the requestor’s behavior it is possible to identify the requestor as a normal service user
or as a ‚burglar‘ or ‚attacker‘ of the target system.

Watcher Master 1.4 Page 7 of 46

Watcher - Master manual - Rev. 1.4

1.1 Why Watcher?
There are already other ‘Intrusion Detection Systems’ (IDS) and ‘Intrusion Prevention Systems’
(IPS) in the field like ‘Fail2Ban’, ‘Snort’, ‘Suricata’ and quite a couple of other solutions.

Why don’t we just use them? The trouble is: ‘integration’ and fitness for the purpose.

We were not willing to integrate and maintain several different IDS/IPS systems for the main
services that an ‘exposed host’ is delivering to the open Internet.

These services are:

• Login services

• Mail Transport & Mailbox access services

• WEB services (http/https)

Those services run on some specific ‘service ports’ that must be open in the firewall for the purpose
of the machine. Other service ports are shut in the firewall anyway and therefore there is no need
to deal with them at all at the service level.

Watcher brings it to the point … since ‘service related’ Watcher modules automatically track the
log files in real-time of only those services that are under attack by bandits on the Internet. And
Watcher integrates this trilogy of scanners into a single framework – so there is no messing with a
couple of different systems and tools.

• Fail2ban … only takes care of the ‘login’ services and so it is not sufficient on ‘root servers’
that also run mail transport, mailbox & WEB services.

• Suricata … is more a full-fledged ‘network traffic analyzer’ than an IDS/IPS and is overkill
for the purpose of protecting services that run over open service ports in the firewall.

• Snort … is meanwhile a commercial product and owned by CISCO-Talos. There is a
‘community’ edition available but this is restricted by a ‘for personal use only’ policy. Due
to its age Snort is pretty much outdated.

Indications of attacks can be directly found in the service’s log files and there is no need for
‘scientific low-level network analysis’.

For example, if a Postfix MTA complains in its log file with

“…: connect from unknown[<IP addr aa.bb.cc.dd>] …”

the situation is entirely clear. It says by the pattern ‘\: connect from unknown\[‘, that someone
coming from a NXdomain (Non-eXistend domain; i.e. not known by any DNS) is trying do deliver
a mail message across this MTA. But MTAs do not talk to NXdomains, since they are not ‘open
relays’ to transport mail messages for any anonymous sender that comes along.

Watcher Master 1.4 Page 8 of 46

Watcher - Master manual - Rev. 1.4

So a Watcher module related to a service just syncronously reads in real-time the logs of services
straight from the system-logger.

Each ‘Module Process’ is straight related to a so-called ‘facility’ of the system-logger to which the
service delivers its log. Then the system-logger (rsyslog or syslog-ng) passes this log messages
through a FIFO directly to the ‘Module Process’ of a Watcher module for determination and
registration of an attacker in an exclusive database that results probably in a DROP in the firewall
for an attacker, if a configurable limit of ‘affairs’ is reached.

So Watcher integrates all ‘scanners’ (modules) into a single framework and there is no need to
operate and maintain a bunch of several different products.

1.2 What’s the audience for Watcher?
Watcher is addressed to anyone who has to operate a server on the open internet these days as an
‘exposed host’. These are usually so-called ‘root-servers’ and machines that are running in the
DMZ of a data center.

In such a situation a server system is exposed to the access by anyone (i.e. any other system
accessing the internet) which is essential for some services; e.g. Mail transport agents (MTAs like

Watcher Master 1.4 Page 9 of 46

Watcher - Master manual - Rev. 1.4

PostFix, Exim, Qmail,…), WEB services and last but not least ‘console login’ services to maintain
and operate the own servers across the internet.

Companies and people that have rented a so-called ‘root server’ from a provider to hang out their
business or organization domains to the open internet for presentation are facing the harsh winds
that are going ‘round on the open internet. SPAM, SCAM, break-in attempts and other kinds of
attacks are instantly seen when the computer system is exposed to the open Internet.

1.3 What does Watcher need?

1.3.1 Firewall
Since Watcher is a ‘subordinate firewall manager’ Watcher needs a flawlessly working firewall on
the system. It is assumed that a firewall is already installed and running. The Prep routine will
check this in the first stage of preparation and denies preparation of the Watcher framework if there
is no suitable firewall installed and running.

A modern Linux kernel provides two different ‘firewall systems’:

• xtables …. maintained by iptables, ebtables, arptables & ipset

• nftables … maintained by ‘NetFilter Tables’ (NFT)

In Watcher Rev. 1.x series the ‘traditional’ xtables kernel firewall is supported, that is maintained
by the iptables command, the iptables-service and the ipset tool.

(Watcher Rev. 2 will be fully based on ‘nftables’ that integrates IPV4 & IPV6, iptables, arptables,
ebtables and ipset in a single framework that is maintained by the ‘nft’ tool.)

Assure that iptables, iptables-services & ipset tools are installed and working flawlessly.

The ‘firewalld’ is not supported, since ‘firewalld’ is just a PYTHON wrapper around the native
‘nft’ commands that maintain a nftables kernel firewall.

1.3.2 System logger
The Watcher modules read the system logger output in real time through exclusively assigned
FIFOs (‘named pipes’). This takes manual preparation of your system logger before any of the
installed and activated modules can work. See the installation manual for modules on how the
system logger (rsyslog or syslog-ng) must be prepared in order to work with Watcher modules
properly.

Watcher Master 1.4 Page 10 of 46

Watcher - Master manual - Rev. 1.4

1.4 What does Watcher do?
The Watcher master package provides the

• framework

• libraries (APIs for awk & bash)

• system determination and automatic preparation tasks

• start-up services

As that the Watcher master is the basis for operation and must be installed first of all.

Watcher modules automatically and dynamically track specific system logs on the system and
determines the behavior of requestors. In this sense Watcher is an ‘intrusion detection’ system. But
Watcher does not only detect burglars & attackers but takes measures against future attempts to
keep the services free from defending themselves instead of doing their usual tasks. This leads to a
much better performance of the services.

Watcher modules record every attempt of burglary & attack in a database and if a configurable
maximum of attempts (‘affairs’ in Watcher’s nomenclature) is reached the modules puts a DROP
into the firewall and records this in the database as well.

There are several watcher modules in order to track the behavior of requestors on several different
services.

• Console Logins (SSHD)

• Mail transport request to the MTA & Mail-box access services (POP, IMAP, …)

• WEB server log scanner (integrated with release 1.3)

• Geo-Blocking dynloader & Geo-Tracking (pseudo-)module (new with release 1.4)

Ill-behavior of requestors is honored by a DROP in the firewall after some identified requests, that
show hostility or pointlessness of a requestor. This way a requestor is blocked right at the ‚front
door‘ and cannot pester a service with attacks; e.g. attempts of pushing SPAM through a mail server
or gaining console access to the system.

1.5 How does Watcher do this?
At system start-up (or after reboot) the system starts the Watcher service (Master) which in turn
flushes the firewall within seconds from several resources. Since revision 1.3 it takes not even a
second.

Watcher Master 1.4 Page 11 of 46

Watcher - Master manual - Rev. 1.4

 Watcher runs a master process and starts several modules for specific services.

• The WatchLG module tracks hostile login attempts.
• The WatchMX module tracks mail transport requests for signs of abuse and illegal access.
• The WatchMB (as a companion of WatchMX) tracks illegal access to the mail users’

mailboxes or illegal mail transport request usually conducted by SPAMers.
• The GeoTrack (Pseudo-)module

Each module has its own database where all the illegal access attempts are stored during scanning
of the requestor’s behavior. So it is easily possible to restore the firewall with DROP information
for IP addresses that were identified in the past as ‘burglar’, ‘SPAMmer’, ‘attacker’ a.s.o

The GeoTrack (pseudo) module even blocks complete subnets (CIDRs), if a country is on the list in
the configured ‘ZONES=...’ variable.

On a running system it looks like this ...

[root@hphws2 Watcher]# ps -ef | grep -i watch
root 2873 1 0 07:32 ? 00:00:00 /bin/bash modules/WatchLG/WatchLG
root 2874 1 0 07:32 ? 00:00:00 /bin/bash modules/WatchMX/WatchMX
root 2875 1 0 07:32 ? 00:00:00 /bin/bash ../WatchMB/WatchMB

1.6 How is Watcher constructed?

Philosophy: KISS … Keep It Small & Simple.

Watcher avoids the use of any fancy programming languages or 3rd-party runtime environments
and no compilation of source code is needed.

Watcher is entirely based on ‘onboard tools’ that any modern UNIX-like operating system
provides anyway or that are publicly available as reliable OpenSource components.

Essentially Watcher uses GNU bash, GNU awk and relies on other GNU implementations of the
UNIX tool-set (like GNU grep, etc.; ‘coreutils’ et al) that comes with every basic installation of a
Linux system.

The Watcher development started in 2013 on an old SuSE 9.7 Linux system as a mere hack just to
prevent break-in attempts to a rental ‘root server’ in a data center.

Later on Watcher development continued on a CentOS system (CentOS-6 in 2016 and since 2018
on CentOS-7) whereas CentOS is known for its “old-fashioned” orientation. “Latest-is-greatest” is

Watcher Master 1.4 Page 12 of 46

Watcher - Master manual - Rev. 1.4

not the way of CentOS but reliability, stability & maintainability. So CentOS is often running with
all tools at least one release level behind the actual releases .

By growing Watcher on such a basis it is pretty much guaranteed, that Watcher works just fine on
newer systems like RHEL-8/CentOS-8 or even newer. This also keeps ways open to easily adapt
Watcher to other Linux distributions (Debian, Ubuntu, …) or even other operating systems (AIX,
HPUX, Solaris, ...) for which GNU renditions of the UNIX tool-set are available. Revision 1.3
introduced extended to support for:

• SuSE Linux Enterprise Server (SLES) & openSuSE Leap

• Debian

• Ubuntu

1.7 What’s new in this revision??
The previous release Watcher 1.3 completed the trilogy of modules by implementing the module
“WB” for reacting on WEB server attacks.

1.7.1 Geo-Blocking & Geo-Tracking
Watcher revision 1.4 drops-in geo-blocking & geo-tracking.

The experience shows, that over 60% of all attacks are coming from Russia & China. Blocking such
countries by DROPs in the firewall can increase the effectivity of attack suppression to a level of
95%.

Watcher Master 1.4 Page 13 of 46

Watcher - Master manual - Rev. 1.4

2 Overview

2.1 Overall architecture

2.2 Watcher master
The ‘Watcher master’ provides the framework and library for other components like ‘dynamic
loaders’ (dynloader) and ‘modules’ that address specific services on a particular server system. It

Watcher Master 1.4 Page 14 of 46

Watcher - Master manual - Rev. 1.4

acts as a ‘one-shot’ service for the initial load of the firewall at system startup or after reboot and
then dies.

The watcher master gets started by the operating system if it is enabled as a service.

In turn the master starts the configured modules as these are enabled in the watcher.conf
configuration file if these dynloaders or modules are installed at all.

The master process does not use a database.

In the first place Watcher master provides global ‘blacklist’ & ‘whitelist’ files that are maintained
manually and provides a local blacklist for IP addresses and complete networks (CIDR format) that
are to be DROPed consequently because of known ill-behavior.

In addition the master provides mechanisms to request DROP lists from global resources (like
SpamHaus or NixSPAM, etc.). Such programs are called ‘dynamic loaders’ (DynLoader)

In principal the Watcher master can run without any modules using only its own static blacklisting
and the worked out information from common/external resources.

But with installed modules the tracking of burglars, attempts of system abuses & attacks gets fully
dynamic.

Watcher Master 1.4 Page 15 of 46

Watcher - Master manual - Rev. 1.4

2.3 Watcher modules
The Watcher modules are the real work horses in the Watcher system.

Modules are autonomous processes that get started and stopped by the Watcher master service.
Once started they run independently in the Watcher framework and can even restart themselves if
they crash for some reason that occurred.

Modules provide:

• Real-time intrusion detection & prevention

• Storage of their information in exclusive databases (sqlite3) for fast retrieval and update
(instead of linear file searches that turn out getting slower-and-slower as data grows)

• Statistic reports to get measurement data of the efficiency of the measures

• Self-cleaning through automatic housekeeping of the databases through database
expiration.

• Autonomous feed of the firewall with DROPs.

• Autonomous logging and extended tracing for the intrusion detection.

For a detailed explanation of the Watcher modules see the separate “Watcher modules manual”.

2.4 Dynloaders
Dynamic loaders (dynloaders) are specific programs that can fetch information from external
resources. These ‘external resources’ can be anything: local files, lists from the Internet, etc.

See the section for dynloaders in 36

Watcher Master 1.4 Page 16 of 46

Watcher - Master manual - Rev. 1.4

3 Installating Watcher
The watcher service takes some basic system resources so that it can work.

In its preparation routine ./Prep it checks whether the needed system components are present and
automatically creates a ‘system.conf’ file that adapts and explains the system to the Watcher master,
the dynloaders, the modules and the utility programs.

3.1 Pre-installation considerations

3.1.1 Turning off SELINUX
On a ‘root-server’ or datacenter server in the DMZ there are usually no users but the ‘super user’
allowed and/or registered. Having SELINUX enabled does more harm than it does any good in such
a situation where no non-privileged users are connecting the system. For instance, SELINUX rules
forbid the system logger to write log files outside of /var/log/… and on ORACLE Linux it was
found, that creating ‘named pipes’ (FIFOs) where they are needed was forbidden. Turning
SELINUX ‘off’ solves all this.

Edit the file /etc/selinux/conf and change:

SELINUX=disabled

Then reboot the system before you continue.

3.1.2 Switching to syslog-ng
Practically all linux distributions come usually with ‘rsyslog’ installed as the standard system
logger. But experience showed, that ‘rsyslog’ has its flaws which are not acceptable:

• hanging FIFOs

• redundant criss-cross logging to several log files for log streams from the WEB module’s

After switching to ‘syslog-ng’ all these quirks were gone and configuring works far better as
‘syslog-ng’ is smarter and excellently documented.

So it is recommended to replace ‘rsyslog’ with ‘syslog-ng’ (OCE; Open Community Edition) which
is fairly easy to accomplish. See the section ‘Configure the system logger’ for details.

3.2 Install path & unpacking
Before the Watcher master package is unpacked a choice must be made where to locate and unpack
the package. The Watcher system can run from any path you like.

Good choices are:

• /opt/…
• /usr/local/…

Watcher Master 1.4 Page 17 of 46

Watcher - Master manual - Rev. 1.4

• /root/bin/… (or just /root/…); provided your root filesystem is not short of disk space.

A Watcher system that ran for some time consumes about 100-120MB. The most filesystem
consumption comes from module databases and the *.trace files of the modules that live directly in
the module path. So calculating ~200-250MB of filespace is a good choice to be prepared of future
extensions; e.g. if you plan to roll your own dynloader.

The master package unpacks to a relative path ‘Watcher/...” and all Watcher packages (master &
modules) are stored in simple ‘*.tar’ files. To unpack the package file just type:

tar xvf <package>.tar

To continue installation change to the installation directory with:

cd Watcher

3.3 Preparation
In the installation directory (master path) you will find a program named Prep

The PREP script will handle a big part of the installation tasks for you.

• It check the platform on which it is running: RedHat, SuSE, Debian/Ubuntu ...

• It checks for needed programs which the watcher modules, dynloaders and utility programs
depend on

• Places a start-up script in /etc/init.d/… and/or systemd configuration and enables the ‘auto
start’ of the watcher service (master)

Just go to the installation directory (MASTER_PATH) and type in:

./Prep [ENTER]

‘Prep’ itself is started with a so-called ‘she-bang’ (#!) to the GNU bash normally found in /bin/bash.

If there is no GNU bash installed on your system ‘Prep’ fails with an error message from the shell
that you are using:

(your shell) ./Prep: /bin/bash: bad interpreter: No such file or directory

If this should happen install a GNU bash V3.x or newer on the system which is absolutely
essential. Not even ‘Prep’ can start without.

If ‘Prep’ detects other missing things it will tell you and the missing things must be installed on the
system before Prep will continue with further preparation for the Watcher framework.

If the check for needed tools passed successfully then Prep continues with the preparation of the
startup in /etc/init.d and prepares the Watcher startup in traditional SysV manner. When it detects a
systemd-style startup concept on the system a ‘watcher.service’ file will be also installed in
/usr/lib/systemd/system/watcher.service.

Watcher Master 1.4 Page 18 of 46

Watcher - Master manual - Rev. 1.4

3.3.1 Needed programs
Absolutely essential:

• GNU bash V4 or newer
• GNU awk V4 or newer
• GNU grep V2.2 or newer

Additionally needed:

• ‘iptables’ & iptables-services
• ‘ipset’ (essential since Watcher 1.3)
• ‘ipcalc’ for validation of IP addresses (not available on Debian-like systems; e.g. Ubuntu)
• ‘realpath’ since all Watcher components check WHERE they are running and determine

their own file position and name for identification in log-files and such.
• ‘sqlite3’ if any of the modules is in use; the watcher-master itself does not need a database
• … also …
• ‘at’ for the auto-restart after a module runs into a crash
• ‘bc’ for some floating-point calculations; e.g. for tools like Watcher-Report, Procrate, etc.

3.3.2 Toolpath
Some of the tools that come with the Watcher master or the modules symlink themselves to the path
provided by the TOOLS_LINK variable defined in watcher.conf /usr/local/sbin to be widely
available.

[root@vmd28527 Watcher]# ls -l /usr/local/sbin/
total 8
lrwxrwxrwx 1 root root 28 Nov 17 10:28 Freeme -> /root/bin/Watcher/bin/freeme
lrwxrwxrwx 1 root root 44 Nov 17 10:28 LGinjector -> /root/bin/Watcher/modules/WatchLG/LGinjector
lrwxrwxrwx 1 root root 44 Nov 17 10:28 MXinjector -> /root/bin/Watcher/modules/WatchMX/Mxinjector

To easily access these tools the PATH variable can be extended in the
superuser’s .profile, .bash_profile or the ./bashrc file:

export PATH=/usr/local/sbin:$PATH

This way all the Watcher tools are generally available from $TOOLPATH.

Note, that you must log-out and log-in again after such a change to your PATH variable.

Watcher Master 1.4 Page 19 of 46

Watcher - Master manual - Rev. 1.4

4 Operation Manual

4.1 Watcher master operation

4.1.1 Starting and stopping the watcher service
[root@hphws2 etc]# service watcher start
Starting service watcher:
Watcher V1.3 ... Running on centos 7
Language en_US.UTF-8, LC_ALL: en_US.UTF-8
Watcher-ramdisk on /root/bin/Watcher-1.3/Pool … size=20480k)

Present DynLoaders: nixspam spamhaus
Present Modules : WatchLG WatchMB WatchMX

Loading firewall ...
Took 0.6890 seconds
for 16038 total firewall DROPs
Loadrate: 23277 DROPs per second

Starting module WatchLG ...
Starting module WatchMX ...
Starting module WatchWB ...
Installed modules: WatchLG WatchMX WatchWB
[OK]

Possible options are:

stop Stops all modules

Note: This will NOT unload the DROPs from the firewall.
The system remains protected until the iptables service is stopped/restarted as well.

start This triggers the ‘Load’ programs from dynloaders, modules and static files
(blacklist, whitelist, ...) and finally calls FillFW to set up the firewall with complete
initial DROP information from all resources before the modules get started. Finally
reads the local manually maintained ‘blacklist’ and ‘whitelist’ files

restart Does a ‘stop’ followed by ‘start’ in one rush. Note that the iptables service is not
affected by this. Only the watcher modules and dynloaders are triggered to load their
exclusive IPSETs from their resources.

reload Restarts the iptables service prior to restart the watcher service; i.e. it starts based on
a ‘plain’ setup of your firewall settings.

(full) Deprecated. Replaced by ‘reload’
With Watcher revision 1.3 no longer needed and removed from the options.

Watcher Master 1.4 Page 20 of 46

Watcher - Master manual - Rev. 1.4

If your particular system has a systemd-style startup system the ‘systemctl’ command might be used
to control the Watcher startup:

systemctl <option> watcher

The difference is, that all output from systemctl goes to the /var/log/messages log file and the
command operates otherwise quiet unlike the ‘service’ command that reports pretty verbose and
detailed.

4.1.2 Maintaining static lists (blacklist, whitelist)
In order to provide individual lists of IP addresses the Watcher master directory ($MASTER_PATH)
holds files for blacklisting and whitelisting; namely: ‘blacklist’ and ‘whitelist’

The format of this files is as follows:

#comment
<tabs/blanks/newlines>
<tabs/blanks> #comment
<IP addr or CIDR>
<IP addr or CIDR> #comment

(… and so on ...)

• Everthing after a ‘#’ is ignored
• Comments can be indented by tabs & blanks (e.g. for section headings in complex files)
• Empty lines are ignored
• Data lines with single IP addresses or CIDRs are taken from the first column.

A comment may follow separated by tab and/or blank characters

See the ‘blacklist’ & ‘whitelist’ *-sample files in the $MASTER_PATH.

As a minimum there should be at least a whitelist file named ‘whitelist’ present with your essential
addresses provided.

[root@vmd28527 Watcher]# cat whitelist

<your host IP here> # This host
127.0.0.1 # This localhost
10.0.0.0/8 # This VPN

This will prevent getting locked-out by the firewall on your own addresses.

If you have made changes to the ‘blacklist’ and/or ‘whitelist’ file(s) restart the watcher service.

Watcher Master 1.4 Page 21 of 46

Watcher - Master manual - Rev. 1.4

service watcher restart
… or ... # systemctl restart watcher
… or … # /etc/init.d/watcher restart

(the latter gets you a full output of the start-up script)

Watcher Master 1.4 Page 22 of 46

Watcher - Master Manual - [DRAFT]

5 Common framework features

5.1 Logging & Tracing
Watcher has its own log format for writing log & trace files.

The timestamp in log & trace files has ISO format with milliseconds prepended on a log line
followed by the origin and PID of the logging instance.

2023-07-31T11:28:31.414 <origin>[<pid>]: <original log line>

This format is defined by the log(), clog() and trace() functions in common.bashlib which is sourced
by every program, dynloader or module in the Watcher framework.

(excerpt from common.bashlib)

log simple
log() {
 printf "%-18s %-s[%d]: %s\n" "`date +%Y-%m-%dT%T.%3N`" "$ME" "$$" "$*" >> $LOG
}

#
Columized log
4 columns: 10,10,15,rest
#
clog() {
 printf "%-18s %-s[%d]: %-10s %-10s %-15s %s\n" "`date +%Y-%m-%dT%T.%3N`" "$ME" "$$" "$1"
"$2" "$3" "$4" >> $LOG
}

…
trace() {
 if [! -z "$TRACE"]
 then echo "`date +%Y-%m-%dT%T.%3N` $ME[$$]: $*" >> $ME.trace
 fi
}

The clog() function is only used to write the log files in /var/log/WatchXX.log to get a nicer tabular
output for the essential event information from modules.

2023-07-31T02:17:21.597 WatchLG[13831]: [inject] NXDOMAIN 112.186.218.246 'Initial 4/5, Penalty: 4'
2023-07-31T03:24:13.959 WatchLG[13831]: [inject] FAKEHOST 81.17.22.114 'Initial 4/5, Penalty: 4'
2023-07-31T03:24:14.080 WatchLG[13831]: [inject] FAKEHOST 81.17.22.114 'Dropped @ 5'
2023-07-31T04:08:54.802 WatchLG[13831]: [inject] NXDOMAIN 185.224.128.142 'Dropped @ 5'
2023-07-31T05:34:11.431 WatchLG[13831]: [inject] NXDOMAIN 210.179.113.202 'Dropped @ 5'
2023-07-31T10:33:07.407 WatchLG[13831]: [inject] NXDOMAIN 103.138.71.242 'Initial 4/5, Penalty: 4'
2023-07-31T11:07:49.673 WatchLG[13831]: [inject] NXDOMAIN 159.89.203.133 'Initial 4/5, Penalty: 4'
2023-07-31T11:28:28.785 WatchLG[13831]: [inject] FAKEHOST 45.95.147.207 'Initial 4/5, Penalty: 4'
2023-07-31T11:28:28.865 WatchLG[13831]: [inject] FAKEHOST 45.95.147.207 'Dropped @ 5'

The trace() function outputs the entire log line as it was provided by the system-logger.

Watcher Master 1.4 Page 23 of 46

Watcher - Master Manual - [DRAFT]

2023-07-31T11:28:28.726 WatchLG[13831]: [Loop: 1829] 'Jul 31 11:28:28 vmd28527 sshd[29371]: Address
45.95.147.207 maps to host0.ennsdomains.com, but this does not map back to the address - POSSIBLE
BREAK-IN ATTEMPT!'
2023-07-31T11:28:28.729 WatchLG[13831]: [inject] Triggered by rule ['BREAK-IN'] 'POSSIBLE BREAK-IN
ATTEMPT'
2023-07-31T11:28:28.765 WatchLG[13831]: [inject] FAKEHOST 45.95.147.207 Port:
2023-07-31T11:28:28.787 WatchLG[13831]: [inject] FAKEHOST 45.95.147.207 'Initial 4/5, Penalty: 4'
2023-07-31T11:28:28.790 WatchLG[13831]: [inject] Finished for rule ['BREAK-IN'], 73/60 ms

The related time zone of the Watcher timestamps is that, which is defined for your individual
operating system; i.e. localtime in your time zone.

5.2 Debugging aid
All programs, dynloaders and modules have debugging information in the preamble of the code
straight after the shebang:

#!/bin/bash
if ["$1" == 'debug']; then set -x; shift; fi
if ["$1" == 'debug2']; then set -xvT; shift; fi
(rest of the program code)

So in case of any troubles you may start a program (tool or dynloader) with either ‘debug’ or
‘debug2’ as the first argument after the program name:

<program> debug (arguments, if any)
<program> debug2 (arguments, if any)

With ‘debug2’ function calls are traced as well.

Example:

[root@vmd28527 nixspam]# . Dynload nixspam
/root/bin/Watcher-1.4/dynload/nixspam
[root@vmd28527 nixspam]# ./nixspam debug2

This will output the entire run (including all sourced components and function calls) to your
console.

Watcher Master 1.4 Page 24 of 46

Watcher - Master Manual - [DRAFT]

5.3 Runtime IPsets
Dynloaders and modules create their IPsets on-the-fly through their ‘Load routine’ which the
watcher service calls once during service start.

In case of a module the ‘Load routine’ is a symbolic link to a special program called LoadXX that
knows hows to retrieve the DROP information from the modules’s database and how to convert the
data into a ‘ipset.Loadfile-$ME-DB’, that is in turn placed in the pool directory ($POOL).

[root@vmd28527 Watcher-1.4]# . Module lg
/root/bin/Watcher-1.4/modules/WatchLG
[root@vmd28527 WatchLG]# ls Load*
Load LoadLG
[root@vmd28527 WatchLG]# ls -l Load*
lrwxrwxrwx 1 root root 6 May 1 21:03 Load -> LoadLG
-rwxr-xr-x 1 root root 1253 Jun 14 11:59 LoadLG

In case of a dynloader the ‘Load routine’ is a symbolic link as well but to the main program of the
dynloader.

[root@vmd28527 WatchLG]# . Dynload spamhaus
/root/bin/Watcher-1.4/dynload/spamhaus
[root@vmd28527 spamhaus]# ls -l Load*
lrwxrwxrwx 1 root root 8 May 1 21:03 Load -> spamhaus

The static and manually maintained ‘blacklist’ and ‘whitelist’ files are (re)loaded by the Watcher
toolbox commands ‘Blacklist’ and ‘Whitelist’, that are called during service startup.

[root@vmd28527 Watcher-1.4]# ipset -n list
WatchLG-DB
WatchMX-DB
WatchWB-DB
GeoTrack-DB
spamhaus
nixspam
geo-cn
geo-ru
…
hijackers
blacklist
whitelist
tarpit
custody
validate

###

Modules reflect the attackers history stored in their databases in IPsets named ‘WatchXX-DB’.
These IPsets are loaded by the ‘Load’ routine of the watcher service and never change at runtime
afterwards. The same applies for the (pseudo-)module GeoTrack.

Watcher Master 1.4 Page 25 of 46

Watcher - Master Manual - [DRAFT]

At runtime only the ‘tarpit’ and ‘custody’ IPsets are used by modules and change.

The ‘validate’ IPset is a special case for systems, that do not have a decent ‘ipcalc’ command which
can validate an IP address like the ipcalc command in RHEL-style systems.

5.3.1 The ‘tarpit’ set
The ‘tarpit’ IPset is a timed ipset in the firewall with a DROP target.

It is the most important IPset in the Watcher frame work, since it provides the means against
(D)DOS attacks. [(distributed) denial of service attacks]

It takes a timeout value on assignment of an IP address, that is counted down from the moment of
assignment until it is zero. If zero is reached, the entry will be removed from the IPset and an
incoming IP address will be accepted by the firewall again. So the tarpit IPset is self-cleaning.

The regular modules (Watch<XX>) use the tarpit IPset in their Initial & Count section of the log
scanner for each affair, that a suspected IP address has caused with its attempt to access your server
system until the counted number of affairs exceeds the configured MAX_AFFAIRS for the module.

The timeout value is logarithmic by ‘power of 2’ and calculated in the module code as:

… timeout $((2**AFFAIRS * TIME_SLICE)) … i.e. 2affairs * TIME_SLICE

This means, that with each affair the timeout value doubles; i.e. TIME_SLICE is multiplied by 2, 4,
8, 16, 32 with increasing affairs of an IP address.

[root@vmd28527 WatchWB]# ipset -t list tarpit
Name: tarpit
Type: hash:ip
Revision: 4
Header: family inet hashsize 1024 maxelem 65536 timeout 60 comment
Size in memory: 11808
References: 2
Number of entries: 7

[Note: Without ‘-t’ (terse mode) a complete list of ‘Members’ in the IPset is shown as well and the comment shows you
the remaining timeout in seconds, the module type and the affair count of the bandit.]

Also note, that the type of the ‘tarpit’ IP set is ‘hash:ip’. This means, that the ‘tarpit’ IPset can only
take single IP addresses. This is just in case to block a supposedly attacking IP address in a timely
manner.

Watcher Master 1.4 Page 26 of 46

Watcher - Master Manual - [DRAFT]

5.3.2 The ‘custody’ set
The ‘custody’ IPset is the final destination for malicious IP addresses, that have exceeded their
affair counter in a module’s database beyond the MAX_AFFAIRS value that is configured in the
modules configuration file.

Unlike the ‘tarpit’ IPset where the entries timeout after a while the ‘custody’ IPset keeps the bandits
firmly in custody as the name implies; i.e. attacking IP addresses are kept ‘in jail’ after the module
has registered the bandit in its database with a ‘DROP’ state and the bandit dares to reoccur.

The trace output of the module’s injector (inject function of the module) reports this as:

… : [inject] DROPed culprit <IPADDR> re-occured ... taken into custody

The ‘custody’ IP set is not normally self-cleaning, since bandits gather with time (weeks,
months, ...)

You may check the filling state of the IPset with the ipset command once in a while:

[root@vmd28527 WatchWB]# ipset -t list custody
Name: custody
Type: hash:net
Revision: 6
Header: family inet hashsize 1024 maxelem 65536 comment
Size in memory: 1385
References: 2
Number of entries: 8

[Note: Without ‘-t’ (terse mode) a complete list of ‘Members’ in the IPset is shown as well and the comment shows you
the module type and the affair count of the bandit.]

If you see ‘Number of entries:’ being several thousands after some time (weeks, months,…) you can
simply ‘reload’ the watcher service with “# service watcher reload”. This will clear the
‘custody’ IPset and all dropped bandits can be found in the WatchXX-DB ipset after the IPsets were
reloaded by the ‘Load’ phase of the watcher reload.

Note also, that the type of the ‘custody’ IPset is ‘hash:net’. This means, that an entry in the custody
IPset can be an entire subnet in CIDR format and not just a single IP address like in the ‘tarpit’
IPset.

5.3.3 The ‘validate’ (pseudo-)set
The ‘validate’ IPset is a pseudo IPset, that is not linked with any firewall chain.

It is a timed IPset with a fixed timeout value of just 1 second.

Its only purpose is - as the name implies – to validate an IPV4 address and reply the return code of a
‘blind assignment’.

Watcher Master 1.4 Page 27 of 46

Watcher - Master Manual - [DRAFT]

Since the ipset command validates supplied IP addresses on the ‘add’ sub-command the pseudo
IPset ‘validate’ is provided.

The return code on a ‘blind assignment’ is not equal ‘0’, if the IP address is invalid:

[root@vmd28527 WatchLG]# ipset -q add validate 277.1.2.3; echo $?
1
[root@vmd28527 WatchLG]# ipset -q add validate 177.1.2.3; echo $?
0

This is chiefly needed for DEBIAN-ish Linux distributions (Debian, Ubuntu, …), that do not have a
ipcalc command which can do IP address validation.

Second, IP address validation is essentially needed as plausibility check for manually typed-in IP
addresses. This is the case for the ‘emergency injectors’ of modules:

• LGinjector
• MXinjector
• WBinjector

These know how to write the particular database of a module and allow manual input of an IP
address on the command line:

XXinjector IP_addr tag

Then an entry is made to the module’s database and the questionable IP address is straight injected
into the ‘custody’ IPset.

Watcher Master 1.4 Page 28 of 46

Watcher - Master Manual - [DRAFT]

6 Appendix A - Additional information

6.1 Watcher directory structure

Seen from a loader or module process the Master-Path is always 2 levels up; i.e.: ../../

6.2 Watcher Toolbox
In $MASTER_PATH/bin the Watcher framework provides a couple of handy tools. These tools are
symlinked to a common path that is usualy in your PATH variable (default /usr/local/sbin defined by
TOOLS_LINK in watcher.conf). The configuration variable TOOLS (also in watcher.conf) defines
a list of programs to be provided in $TOOLS_LINK. Watcher automatically symlinks all the
configured tools to the TOOLS_LINK directory when it (re)starts.

Note that all Watcher tools are starting with an uppercase letter.

Watcher Master 1.4 Page 29 of 46

Watcher - Master Manual - [DRAFT]

6.2.1 Informational commands

6.2.1.1 Trace
Trace [LG|MX|MB|WB|GE]
Trace [lg|mx|mb|wb|ge]

The ‘Trace’ command directly shows the module’s trace file of choice. You don’t have to go to the
module’s path or have to type in the module’s trace file path.

6.2.1.2 Watcher-Report
Watcher-Report (no parameters)

Watcher-Report prints out a list with the current filling state of IPSETs, databases and contribution
by dynloaders.

6.2.2 Firewall commands

6.2.2.1 Blacklist
Blacklist

(no parameters)

Will reload the IPSET ‘blacklist’ with changes of the manually maintained ‘blacklist’ file in
MASTER_PATH’ file after changes.

Call this command after you have made changes to the ‘blacklist’ file in $MASTER_PATH

See also ‘Whitelist’

6.2.2.2 Whitelist
Whitelist

(no parameters)

Will reload the IPSET ‘whitelist’ with changes of the manually maintained ‘whitelist’ file in
MASTER_PATH’ file after changes.

Call this command after you have made changes to the ‘whitelist’ file in MASTER_PATH

See also ‘Blacklist’

Watcher Master 1.4 Page 30 of 46

Watcher - Master Manual - [DRAFT]

6.2.3 Measuring commands

6.2.3.1 Attackrate (experimental)

Attackrate [-d|-t] [LG|MX|WB]

-d … data from databases
-t … data from trace files

Evaluates the minimum, maximum, average & median of ‘time between attacks’ to a service.
This shows the efficiency of a Watcher module.
At the beginning of using Watcher the attack rate might be high (short times between attacks). With
time (days, weeks, months) this time will increase from milliseconds to some minutes or probably
several hours, since more-and-more attackers get a DROP in the firewall and cannot even see your
server anymore.

6.2.3.2 Procrate

Procrate [LG|MX|MB|WB|GE]
Procrate [lg|mx|mb|wb|ge]

Gives you some performance information about the ‘processing rate’ of a Watcher module.
Note that Procrate collects the data from already ‘log rotated’ trace files by searching for lines
‘Finished for rule ...’ and then picks the processing times from the line end to calculate the
minimum, maximum, average & median from the collected data.

6.2.4 Navigation commands
Navigation commands are used in two flavours:

• info
• jump

Calling these by their simple name shows the information about the requested item; i.e. calling
‘Masterpath’ will show the contents of the internal $MASTER_PATH variable

If sourced as ‘. Masterpath’ the command does a real ‘cd’ to the information shown when called in
‘info’ mode. This is because all navigation commands do a ‘cd <info output>’ as the last statement.
But a ‘cd’ in a script file does not affect your interactive shell. This is why command must be
sourced into your interactive shell for a jump to the target directory.

6.2.4.1 Masterpath
 Masterpath
. Masterpath

Watcher Master 1.4 Page 31 of 46

Watcher - Master Manual - [DRAFT]

(no parameters)

Without an argument prints the $MASTER_PATH variable.
So “ls `Masterpath`” shows all files in the MASTER_PATH directory directly.

When sourced as ‘. Masterpath’ brings you directly to the MASTER_PATH. So it is shorthand for:
“cd `Masterpath`”

6.2.4.2 Module

 Module [LG|MB|MX|WB|GE] / [lg|mb|mx|wb|ge]
. Module [LG|MB|MX|WB|GE] / [lg|mb|mx|wb|ge]

Parameter is the module token in any case

Without a parameter returns a list of modules that are present (existing module directories) in the
module path $MASTER_PATH/modules
When sourced as ‘. Module <parm>’ it does a real jump to the selected module path specified by
<parm>

Instead of a module token (LG,MB,MX,WB,GE) you can specify any of the real module directory
names that will be returned, if the program is called without a parameter; i.e.
‘Module GeoTrack’ will work as well.

6.2.4.3 Dynload

 Dynload [<dynloader name>]
. Dynload [<dynloader name>]

Parameter is the dynloader name.

Without any parameter shows a list of available dynloaders in $MASTER_PATH/dynload.

Specify a dynloader name to check for the dynloader path.

For a real jump to the dynloader path source the program by prepending a ‘.<space>’ on the
commandline.

A “cd `Dynload <dynloader name>`” works as well to jump to the dynloader path.

6.2.4.4 Rules

 Rules [LG|MB|MX|WB] / [lg|mb|mx|wb]

Watcher Master 1.4 Page 32 of 46

Watcher - Master Manual - [DRAFT]

. Rules [LG|MB|MX|WB|GE] / [lg|mb|mx|wb|ge]

Parameter is the module token.

Check existence of the ‘../rules’ directory of a module or jump to it.

Without a parameter returns a list of modules that are present (existing module directories) in the
module path $MASTER_PATH/<module> that have a ‘../rules’ sub-directory.

For a real jump to the rules path of the module prepend a ‘.<space>’ on the commandline.

A “cd `Rules <module name>`” works as well to jump to the ‘../rules’ path of the module

6.2.5 Other commands

6.2.5.1 Freeme
Freeme [IP addr]

‘Freeme’ is part of the ‘self-lockout prevention’ feature.

Without an argument removes the IP address of your home or office router that your ISP has
assigned to you from all databases, DB-ipsets & and the ‘custody’ ipset.

If an IP address is given it does the same for the specified IP address; i.e. it removes this IP address
from all module databases and IPSETs.

6.2.5.2 MyFritzbox
MyFritzBox [-v]

This command is part of the ‘self-lockout prevention’ feature.
It is only applicable for users with a FritzBox router at home or in the office.

FritzBox users must have registered their router at AVM in the ‘myfritz.net’ where they get their
‘box ID code’.

The ‘box ID code’ then must be placed in ‘/root/.BoxID’ as the plain address on a single line as it
was assigned by AVM.
e.g. xyzabc4711blablup0815.myfritz.net

After editing this file set the access mode to ‘600’ and owner ‘root.root’

chmod 600 /root/.BoxID

Watcher Master 1.4 Page 33 of 46

Watcher - Master Manual - [DRAFT]

chown root.root /root/.BoxID
ls -l ~/.BoxID
-rw------- 1 root root 29 Jul 12 2021 /root/.BoxID

The result of calling the program is the current plain IP address of your router and will be written
to /var/log/DYN_IP for reference of the Watcher modules in order to accomplish the ‘self-lockout
prevention’

With the ‘-v’ option the result is also printed to the display.

For more details see the section ‘Self-lockout prevention’ in the modules documantation.

6.2.5.3 MyRouter
MyRouter [-v]

This command is part of the ‘self-lockout prevention’ feature.

This is for users with a generic router (other than a registered FritzBox) at home or in the office.

In order to have the command work properly you must first register the router with a ‘dynamic
DNS provider’.

The MyRouter command is used to determine the IP address of generic routers at home or in the
office and it works for FritzBox routers as well.

Then configure the provider relation in the common.conf file in the Watcher MASTER_PATH like:
 DYN_PROVIDER=ddnss.de
 DYN_ADDRESS=itcomserve.ddnss.de

The MyRouter command will then request the IP address of your router, that has the FQDN
specified in $DYN_ADDRESS.

The result is stored in /var/log/DYN_IP to be referred to by the Watcher module(s) for ‘self-lockout
prevention’.

With the ‘-v’ option the result is also printed to the display.

For details see the section ‘Self-lockout prevention’ in the module documentation.

6.2.5.4 Refresh
Refresh LG|MB|MX|WB (any case)

Reload the rules and superflous_map for a module specified by the module token.

Watcher Master 1.4 Page 34 of 46

Watcher - Master Manual - [DRAFT]

Beginning with Watcher 1.4 it is no longer needed to restart the entire watcher services, if changes
were made to rule files and/or the ‘superflous_map’.

The Refresh command will rebuild a new ‘filter’ function from the active rules of a module and the
loads the new filter function into the running Watcher module on-the-fly by sending a HUP signal to
the module process.

trap refresh HUP # React on a 'HUP' for the filter refresh
⁞
refresh() {
local funtag="[${FUNCNAME[0]}]"

 trace "$funtag Reloading filters for $ME ..."
 logger "$ME[$$]: $funtag Reloading filters for $ME ..."
 load_filter "$funtag `date --iso=seconds`" $COMPRESS_FILTER
}

The load_filter function in turn will (re)create a new filter function and (re)creates the
SUPERFLOUS variable in one rush.

load_filter() {
⁞
 … filter rebuild and reload …
⁞
 # Create/refresh superflous_map as well
 SUPERFLOUS=`mk_superflous`
}

The refresh is reported to the console and in trace files.

[root@vmd28527 WatchLG]# Refresh lg
Refresh: Refreshing WatchLG, PID: 5123

Trace file LG:
⁞
2023-08-04T21:54:29.370 WatchLG[5123]: [refresh] Reloading filters for WatchLG ...
2023-08-04T21:54:29.549 WatchLG[5123]: [load_filter] Using filter compressed
2023-08-04T21:54:29.580 WatchLG[5123]: [mk_superflous] (Re)building superflous_map
⁞

In the modules configuration file a variable ‘COMRESS_FILTER=’ can be set to remove all
comment lines and empty lines from the rules, that were read. This results in a very compact
footprint in memory for the resulting filter function.

The old ‘filter’ file is kept in file ‘filter.old’ and then a ‘context diff’ (diff -c …) across these two
files is created to reflect the changes.

[root@vmd28527 WatchLG]# ls -l filter*
-rw-r--r-- 1 root root 2648 Aug 4 21:54 filter
-rw-r--r-- 1 root root 1779 Aug 4 21:54 filter.compress
-rw-r--r-- 1 root root 642 Aug 4 21:54 filter-diffs
-rw-r--r-- 1 root root 2646 Aug 2 16:38 filter.old

Watcher Master 1.4 Page 35 of 46

Watcher - Master Manual - [DRAFT]

6.3 Dynloaders
‘Dynamic loaders’ (dynloader) are utility programs that read IP address lists from external
resources: i.e. from outside the Watcher framework. This can be files on local filesystems, remote
systems or from somewhere on the Internet of which the dynloader knows how to retrieve them and
then turns them into ‘loader format‘ that IPSET understands to configure the firewall.

By that a dynloader is kind of a ‘translator’ that conducts a transition of a proprietary external list
format into a compliant format for the IPSET that the symlinked ‘Load’ program outputs for the
exclusive ‘ipset.Loadfile-XXXX’ that is then in turn filled-in into an exclusively assigned IPSET.
This process is fully dynamic since Watcher release 1.3 and ‘reload’ of the entire firewall is no
longer needed which speeds up the loading of the firewall tremendously. The entire load time for all
dynloaders and modules is with Watcher release 1.3 usually below a second, if nothing has changed
on external resources.

[root@vmd28527 Pool]# head -10 ipset.Loadfile-LG

-exist create WatchLG-DB hash:ip comment

add WatchLG-DB 175.6.35.82 comment "DB,Login,NXDOMAIN"

add WatchLG-DB 106.54.253.9 comment "DB,Login,NXDOMAIN"

add WatchLG-DB 221.181.185.198 comment "DB,Login,NXDOMAIN"

add WatchLG-DB 176.112.79.111 comment "DB,Login,NXDOMAIN"

add WatchLG-DB 51.15.81.22 comment "DB,Login,FAKEHOST"

add WatchLG-DB 106.12.219.184 comment "DB,Login,NXDOMAIN"

add WatchLG-DB 221.181.185.159 comment "DB,Login,NXDOMAIN"

add WatchLG-DB 176.122.164.94 comment "DB,Login,TRUEHOST"

add WatchLG-DB 95.165.131.164 comment "DB,Login,TRUEHOST"

⁞ (and so on)

Every dynloader has a ‘Load’ routine which is usually just a symlink to the main program:

[root@vmd28527 Watcher]# cd dynload/spamhaus/
[root@vmd28527 spamhaus]# ls -l Load spamhaus
lrwxrwxrwx 1 root root 8 Nov 5 11:24 Load -> spamhaus
-rwxr-xr-x 1 root root 1995 Nov 18 21:55 spamhaus

So one must not know the individual name of the loader routine. It can be just called by the name
‘Load’ with the full path.

This makes the entries in the CRONTAB for the updates easy to read.

Watcher Master 1.4 Page 36 of 46

Watcher - Master Manual - [DRAFT]

(‘root’ CRONTAB)

#
#============ Watcher ===
#
*/5 * * * * /usr/local/sbin/Freeme >/dev/null 2>1&
#--- DynLoader : Once per hour
10 * * * * cd /root/bin/Watcher/dynload/spamhaus && ./Load
30 * * * * cd /root/bin/Watcher/dynload/nixspam && ./Load
… and so on …

This load routine is automatically called once by the Watcher service program during service start
when the Watcher service includes ‘loader.conf’ from the Watcher MASTER_PATH.

For the consecutive updates of the provided data a CRONTAB entry is needed that matches the
timely update policy of the external provider.

[root@vmd28527 Watcher]# cat loader.conf
--
loader.conf (used by FILLFW - the Firewall filler)
Startup lines for the modules and dynloader (dynamic loaders)
#
To disable load from a module or dynloader just clamp it off with
a comment character in the first column
--
modules/WatchLG/Load
modules/WatchMX/Load
modules/WatchWB/Load
dynload/spamhaus/Load
#dynload/nixspam/Load
dynload/geo/Load

6.3.1 Repeated dynloader calls
Dynloaders are called only once during startup of the Watcher service.

The Watcher service cannot know how external resources schedule their provisioning and make
changes to it. So subsequent calls to a dynloader must be configured through CRONTAB entries
that match the schedule of information by the external providers.

(excerpt of crontab for ‘root’)
MASTER_PATH=/root/bin/Watcher

⁞
--- DynLoader : Once per hour
10 * * * * $MASTER_PATH/dynload/spamhaus/Load
30 * * * * $MASTER_PATH/dynload/nixspam/Load

The ‘Load’ routine of the dynloader then manages to retrieve refreshed information.

Watcher Master 1.4 Page 37 of 46

Watcher - Master Manual - [DRAFT]

This will create a new ‘ipset.Loadfile-<dynloader name>’ in the framework’s loadpool:

$POOL/ipset.Loadfile-<dynloader name>

For the firewall the retrieval of new/changed information from an external provider is fully
transparent (i.e. not seen).

With the consequent introduction of IPSETs in Watcher release 1.3 this process is fully dynamic
and there is no longer any need to ‘reload’ the entire ‘chain’ in the firewall, if changes happened.

Other dynloaders (or modules) are not affected by this. But you should keep in mind that the
‘refresh calls’ from external providers should run with a little time lag to avoid concurrency; i.e.
don’t run them all at the same minute; i.e. keep them some minutes apart.

(crontab ‘root’)
MASTER_PATH=/root/bin/Watcher
⁞
--- DynLoader : Once per hour
10 * * * * $MASTER_PATH/dynload/spamhaus/Load
30 * * * * $MASTER_PATH/dynload/nixspam/Load

Watcher Master 1.4 Page 38 of 46

Watcher - Master Manual - [DRAFT]

6.4 Rolling your own custom dynloader
What if you have some IP address list from other providers with ‘badfinger’ listings, that you would
like to integrate with Watcher?

Here a schematic concept is shown on how to roll your own dynloader.

To get a clue of the construction you may verify with the included dynloaders ‘spamhaus’ &
‘nixspam’.

It is assumed that the provider delivers the ‘attacker list’ as a simple *.txt file. Infact it can be any
format. But that is abstracted/encapsulated by the ‘extraction function’ in your dynloader code.

Watcher Master 1.4 Page 39 of 46

Watcher - Master Manual - [DRAFT]

First of all your code should contain the usual ‘initialization block’ in the program heading that is
common for all processes in the Watcher concept for ‘positioning’ and ‘naming’.

#!/bin/bash

if ["$1" == "debug"]; then set -x ; fi
if ["$1" == "debug2"]; then set -xvT ; fi

#
Plug MyDynLoader lists dynamically into firewall …
#
#-------------------------
REALPATH=`realpath $0` # Where is my absolute file position?
WHERE=`dirname $REALPATH` # What is my path?
ME=`basename $REALPATH` # What’s my program name?
cd $WHERE # Finally hook to the path where we are called
#-------------------------

Get common variable definitions and library functions from the master.

source ../../common.conf

trap cleanup 0 1 2 9 15

cleanup() {
 logger "$ME[$$]: Finished."
}

You may add to the cleanup() function as you like; e.g. removing temporary files that your code has
generated. But do not place your ‘exit code’ here.

Watcher Master 1.4 Page 40 of 46

Watcher - Master Manual - [DRAFT]

The program code for a dynloader is fairly straight forward on the whole.

Include the grey parts of the coding scheme at first as these comprise the Init, Main & Exit sections.

Then build-up your functions step-by-step and check the results that you get.

Check your code thoroughly before you integrate it in your loader.conf and/or have it fired up by a
CRONTAB entry.

If the ipset.Loadfile-$ME from your custom dynloader produces a clean file to be read by ipset,
then symlink your custom dynloader script to the common name ‘Load’ in the dynloader’s path:

ln -s MyDynLoader Load

With this preparation you can include your custom dynloader to the ‘loader.conf’ file in
MASTER_PATH.

modules/WatchLG/Load
modules/WatchMX/Load
dynload/spamhaus/Load
#dynload/nixspam/Load
dynload/MyDynLoader/Load

Last but not least create a CRONTAB entry in the crontab file for the super-user ‘root’ to get your
custom dynloader started on a regular basis:

Watcher Master 1.4 Page 41 of 46

MyDynLoader (dynload/MyDynLoader/MyDynLoader)

Initialization code from above ...

function retrieve … a function that retrieves the ‘proprietary’ list from the provider by
 its individual file name (retrieval file).

function extract … a function that extracts a mere list of IP addresses from the
 retrieval file and outputs into $DROPLIST

function XX2FW … a function that reads $DROPLIST and creates the
 ipset.Loadfile-$ME in ipset’s load format mapped by the
 $LOADFILE variable

------------- Main program -----------
LOADFILE=../../Pool/ipset.Loadfile-$ME
DROPLIST=Droplist-$ME
retrieve
extract
XX2FW
…

Exit code … (enable after successful testing)

Watcher - Master Manual - [DRAFT]

(crontab ‘root’)

--- DynLoader : Once per hour
10 * * * * cd /root/bin/Watcher/dynload/spamhaus && ./Load
30 * * * * cd /root/bin/Watcher/dynload/nixspam && ./Load
50 * * * * cd /root/bin/Watcher/dynload/MyDynLoader && ./Load

Whether your custom dynloader really runs regularly you may check /var/log/messages file, since at
least the cleanup() function writes to the log file when it lately has finished.

Watcher Master 1.4 Page 42 of 46

Watcher - Master Manual - [DRAFT]

7 Appendix B – Other systems
Watcher was initially developed on CentOS which is a RedHat-style Linux distribution. So all the
examples show how things are organized and configured for such a RedHat-style system.

For other Linux distributions like Debian (and its offsprings like Ubuntu) things may be a little
different due to the differences in system organization.

For instance configuration of system services is found on RedHat-style systems below
‘/etc/sysconfig/…’ but a Debian-style system has organized this to be below ‘/etc/default/…’ or
probably somewhere else. Also package names may essentially differ among different distributions.
For example, what a RedHat-style package delivers in package ‘iptables-services’ can be found in
the software repository for a Debian-style system by the package name ‘netfilter-persistent’.

This chapter relates to these differences and explains the changes for other systems.

Watcher Master 1.4 Page 43 of 46

Watcher - Master Manual - [DRAFT]

7.1 Debian
Debian is a top-level distribution style and so is the guideline for the offsprings like Ubuntu and the
offsprings-of-offsprings like Linux Mint (unsupported by Watcher)

In Debian the ‘iptables-services’ package to fill the initial firewall setup is ‘netfilter-persistent’. So
in order to have Watcher work properly you have to install the ‘netfilter-persistent’ package:

apt install netfilter-persistent

The xtables firewall setup (maintained by the ‘iptables’ command of a Debian-style system is kept
in /etc/iptables/rules.v4. This file must be edited to reflect your situation.

As a starting point the following can be taken:

7.2 Ubuntu (Server edition)
Ubuntu is an offspring of Debian. So Ubuntu shares much with the Debian organization. Here we
explain the specifics for Ubuntu.

At the time of this writing there were no things, that go beyond the Debian specifics. So if the
Debian specifics are fulfilled you are done.

Watcher Master 1.4 Page 44 of 46

sample configuration for iptables service

*filter
:INPUT ACCEPT [0:0]
:FORWARD ACCEPT [0:0]
:OUTPUT ACCEPT [0:0]
-A INPUT -m state --state RELATED,ESTABLISHED -j ACCEPT
-A INPUT -p icmp -j ACCEPT
-A INPUT -i lo -j ACCEPT
Login ...
-A INPUT -p tcp -m state --state NEW -m tcp --dport 22 -j ACCEPT
Mail transport & mailbox services ...
-A INPUT -p tcp -m state --state NEW -m tcp --dport 25 -j ACCEPT
-A INPUT -p tcp -m state --state NEW -m tcp --dport 110 -j ACCEPT
-A INPUT -p tcp -m state --state NEW -m tcp --dport 143 -j ACCEPT
-A INPUT -p tcp -m state --state NEW -m tcp --dport 587 -j ACCEPT
-A INPUT -p tcp -m state --state NEW -m tcp --dport 993 -j ACCEPT
-A INPUT -p tcp -m state --state NEW -m tcp --dport 995 -j ACCEPT
WEB service (httpd) ...
-A INPUT -p tcp -m state --state NEW -m tcp --dport 80 -j ACCEPT
-A INPUT -p tcp -m state --state NEW -m tcp --dport 443 -j ACCEPT
-A INPUT -p tcp -m state --state NEW -m tcp --dport 5900 -j ACCEPT
-A INPUT -p tcp -m state --state NEW -m tcp --dport 5901 -j ACCEPT
-A INPUT -p tcp -m state --state NEW -m tcp --dport 5902 -j ACCEPT
-A INPUT -j REJECT --reject-with icmp-host-prohibited
-A FORWARD -j REJECT --reject-with icmp-host-prohibited
COMMIT

Watcher - Master Manual - [DRAFT]

7.3 SuSE
SuSE is preferring the ‘firewalld’ as the favorite firewall management system. This is definitely a
very bad idea.

‘firewalld’ is not a Linux firewall system at all. ‘firewalld’ is a PYTHON wrapper around the native
‘nft’ commands that manage a modern ‘nftables’ kernel firewall. Even worse is, that SuSE did
never supply an ‘iptables-services’ package, that loads an xtables firewall configuration by use of
the ‘iptables’ command.

SuSE systems luckily have adopted RPM (RedHat-Package-Manager) as the software cataloging
system and uses the system configuration in /etc/sysconfig/… like all RedHat-style systems.

So to get an ‘iptables-services’ package into a SuSE is fairly easy with some easy to manage
tweaks.

1. Get an ‘iptables-services’ package from any RHEL repository; e.g. that of CentOS 8.

https://centos.pkgs.org/8/centos-baseos-x86_64/iptables-services-1.8.4-17.el8.x86_64.rpm. html

2. Install the *.rpm with the ‘--nodeps’ option into the SuSE system:

rpm -ivh --nodeps iptables-services-1.8.4-17.el8.x86_64.rpm

The first start with ‘service iptables start’ will produce some errors on missing things, that must be
fixed.

1. 1. The directory ‘/var/lock/subsys’ must be established:

mkdir /var/lock/subsys

2. The file /etc/init.d/functions is missing and must at be at least ‘touched’ to get rid of
the error

touch /etc/init.d/functions

3. For the ‘iptables-service’ only two trivial functions are referenced in this file and the
following text must be inserted exactly as shown into the file /etc/init.d/functions:

Watcher Master 1.4 Page 45 of 46

success() {
echo “Success”

}

failure() {
echo “Failure”

}

https://centos.pkgs.org/8/centos-baseos-x86_64/iptables-services-1.8.4-17.el8.x86_64.rpm.html
https://centos.pkgs.org/8/centos-baseos-x86_64/iptables-services-1.8.4-17.el8.x86_64.rpm.html

Watcher - Master Manual - [DRAFT]

4. The package ‘insserv-compat’ must be installed for compatibility with the legacy
SysV startup scheme.
zypper install insserv-compat

5. SuSE Linux keeps the ‘iptables’ and ‘ipset’ programs in /usr/sbin instead of /sbin
where these programs normaly reside.
So symlinking these two to /sbin/... sets things right:
ln -s /usr/sbin/iptables /sbin/iptables
ln -s /usr/sbin/ipset /sbin/ipset

With these little tweaks the iptables-service rpm package for a RHEL system works perfectly on a
SuSE system.

Finally you just have to edit the ‘iptables’ load file in /etc/sysconfig/… to fit your needs.

(The blue lines are added here to the sample configuration to have the ports for the most important
services opened plus some basic VNC ports for remote management of the machine.)

Fill-in other configuration for your situation that you can transform from the ‘firewalld’ setup into
native iptables commands.

You don’t have to take care of any IPSETs, that Watcher uses, since Watcher (and in particular the
Watcher modules) will create the IPSETs dynamically ‘on-the-fly’ and links them with the firewall
in a fully dynamic manner.

Watcher Master 1.4 Page 46 of 46

sample configuration for iptables service

*filter
:INPUT ACCEPT [0:0]
:FORWARD ACCEPT [0:0]
:OUTPUT ACCEPT [0:0]
-A INPUT -m state --state RELATED,ESTABLISHED -j ACCEPT
-A INPUT -p icmp -j ACCEPT
-A INPUT -i lo -j ACCEPT
Login ...
-A INPUT -p tcp -m state --state NEW -m tcp --dport 22 -j ACCEPT
Mail transport & mailbox services ...
-A INPUT -p tcp -m state --state NEW -m tcp --dport 25 -j ACCEPT
-A INPUT -p tcp -m state --state NEW -m tcp --dport 110 -j ACCEPT
-A INPUT -p tcp -m state --state NEW -m tcp --dport 143 -j ACCEPT
-A INPUT -p tcp -m state --state NEW -m tcp --dport 587 -j ACCEPT
-A INPUT -p tcp -m state --state NEW -m tcp --dport 993 -j ACCEPT
-A INPUT -p tcp -m state --state NEW -m tcp --dport 995 -j ACCEPT
WEB service (httpd) ...
-A INPUT -p tcp -m state --state NEW -m tcp --dport 80 -j ACCEPT
-A INPUT -p tcp -m state --state NEW -m tcp --dport 443 -j ACCEPT
-A INPUT -p tcp -m state --state NEW -m tcp --dport 5900 -j ACCEPT
-A INPUT -p tcp -m state --state NEW -m tcp --dport 5901 -j ACCEPT
-A INPUT -p tcp -m state --state NEW -m tcp --dport 5902 -j ACCEPT
-A INPUT -j REJECT --reject-with icmp-host-prohibited
-A FORWARD -j REJECT --reject-with icmp-host-prohibited
COMMIT

	Scope of this document
	1 Preface
	1.1 Why Watcher?
	1.2 What’s the audience for Watcher?
	1.3 What does Watcher need?
	1.3.1 Firewall
	1.3.2 System logger

	1.4 What does Watcher do?
	1.5 How does Watcher do this?
	1.6 How is Watcher constructed?
	1.7 What’s new in this revision??
	1.7.1 Geo-Blocking & Geo-Tracking

	2 Overview
	2.1 Overall architecture
	2.2 Watcher master
	2.3 Watcher modules
	2.4 Dynloaders

	3 Installating Watcher
	3.1 Pre-installation considerations
	3.1.1 Turning off SELINUX
	3.1.2 Switching to syslog-ng

	3.2 Install path & unpacking
	3.3 Preparation
	3.3.1 Needed programs
	3.3.2 Toolpath

	4 Operation Manual
	4.1 Watcher master operation
	4.1.1 Starting and stopping the watcher service
	4.1.2 Maintaining static lists (blacklist, whitelist)

	5 Common framework features
	5.1 Logging & Tracing
	5.2 Debugging aid
	5.3 Runtime IPsets
	5.3.1 The ‘tarpit’ set
	5.3.2 The ‘custody’ set
	5.3.3 The ‘validate’ (pseudo-)set

	6 Appendix A - Additional information
	6.1 Watcher directory structure
	6.2 Watcher Toolbox
	6.2.1 Informational commands
	6.2.1.1 Trace
	6.2.1.2 Watcher-Report

	6.2.2 Firewall commands
	6.2.2.1 Blacklist
	6.2.2.2 Whitelist

	6.2.3 Measuring commands
	6.2.3.1 Attackrate (experimental)
	6.2.3.2 Procrate

	6.2.4 Navigation commands
	6.2.4.1 Masterpath
	6.2.4.2 Module
	6.2.4.3 Dynload
	6.2.4.4 Rules

	6.2.5 Other commands
	6.2.5.1 Freeme
	6.2.5.2 MyFritzbox
	6.2.5.3 MyRouter
	6.2.5.4 Refresh

	6.3 Dynloaders
	6.3.1 Repeated dynloader calls

	6.4 Rolling your own custom dynloader

	7 Appendix B – Other systems
	7.1 Debian
	7.2 Ubuntu (Server edition)
	7.3 SuSE

